PROPRIETARY NOTE THIS SPECIFICATION IS THE PROPERTY OF BOE FZ AND SHALL NOT BE REPRODUCED OR COPIED WITHOUT THE WRITTEN PERMISSION OF BOE FZ AND MUST BE RETURNED TO BOE CQ UPON ITS REQUEST # DV236FBM-N00 Product Specification Rev. P0 # **FUZHOU BOE OPTOELECTRONICS TECHNOLOGY Co.,LTD** | SPEC. NUMBER | 1 1102001 011001 | | ISSUE DATE | PAGE | |--------------|------------------|---------|------------|---------| | S8-65-8D-026 | TFT-LCD | Rev. P0 | 2022/03/15 | 1 OF 35 | DAS-RD-20220315-O A4(210 X 297) REV ISSUE DATE Customer SPEC Rev. P0 2022/03/15 # **REVISION HISTORY** $(\sqrt{\ })$ preliminary specification)Final specification | Revision No. | Page | Description of changes | Date | Prepared | |--------------|------|------------------------|------------|----------| | P0 | | Initial Release | 2022/03/15 | P1 | P2 | SPEC. NUMBER S8-65-8D-026 DAS-RD-2019028-O SPEC. TITLE DV236FBM-N00 Product Specification Rev.P0 PAGE 2 OF 35 A4(210 X 297) REV **ISSUE DATE** 2022/03/15 **Customer SPEC** Rev. P0 **Contents** | REVISIONS HISTORY CONTENTS 1 GENERAL DESCRIPTION 1.1 Introduction 1.2 Features 1.3 Applications 1.4 General Specification 2 ABSOLUTE MAXIMUM RATINGS 3 ELECTRICAL SPECIFICATIONS 3.1 TFT LCD Open Cell 4 INTERFACE CONNECTION 4.1 Open Cell Input Signal & Power | 2 | |---|----| | 1 GENERAL DESCRIPTION 1.1 Introduction 1.2 Features 1.3 Applications 1.4 General Specification 2 ABSOLUTE MAXIMUM RATINGS 3 ELECTRICAL SPECIFICATIONS 3.1 TFT LCD Open Cell 4 INTERFACE CONNECTION 4.1 Open Cell Input Signal & Power | | | 1.1 Introduction 1.2 Features 1.3 Applications 1.4 General Specification 2 ABSOLUTE MAXIMUM RATINGS 3 ELECTRICAL SPECIFICATIONS 3.1 TFT LCD Open Cell 4 INTERFACE CONNECTION 4.1 Open Cell Input Signal & Power | 3 | | 1.2 Features 1.3 Applications 1.4 General Specification 2 ABSOLUTE MAXIMUM RATINGS 3 ELECTRICAL SPECIFICATIONS 3.1 TFT LCD Open Cell 4 INTERFACE CONNECTION 4.1 Open Cell Input Signal & Power | 4 | | 1.3 Applications 1.4 General Specification 2 ABSOLUTE MAXIMUM RATINGS 3 ELECTRICAL SPECIFICATIONS 3.1 TFT LCD Open Cell 4 INTERFACE CONNECTION 4.1 Open Cell Input Signal & Power | | | 1.4 General Specification 2 ABSOLUTE MAXIMUM RATINGS 3 ELECTRICAL SPECIFICATIONS 3.1 TFT LCD Open Cell 4 INTERFACE CONNECTION 4.1 Open Cell Input Signal & Power | | | 2 ABSOLUTE MAXIMUM RATINGS 3 ELECTRICAL SPECIFICATIONS 3.1 TFT LCD Open Cell 4 INTERFACE CONNECTION 4.1 Open Cell Input Signal & Power | | | 3 ELECTRICAL SPECIFICATIONS 3.1 TFT LCD Open Cell 4 INTERFACE CONNECTION 4.1 Open Cell Input Signal & Power | | | 3.1 TFT LCD Open Cell 4 INTERFACE CONNECTION 4.1 Open Cell Input Signal & Power | 6 | | 4 INTERFACE CONNECTION 4.1 Open Cell Input Signal & Power | 7 | | 4.1 Open Cell Input Signal & Power | | | | 10 | | 1.27777.3 | | | 4.2 LVDS Interface | | | 4.3 LVDS Rx Interface Timing Parameter | | | 4.4 LVDS Rx Interface Eye Diagram | | | 4.5 LVDS Receiver Differential Input | | | 5 SIGNAL TIMING SPECIFICATIONS | 16 | | 5.1 Timing Parameters (DE only mode) | | | 5.2 Signal Timing Waveform | | | 5.3 Input Signals, Basic Display Colors and Gray Scale of Colors | | | 5.4 Power Sequence | | | 6 OPTICAL SPECIFICATIONS | 20 | | 7 MECHANICAL CHARACTERISTICS | 22 | | 8 RELIABILITY TEST | 23 | | 9 PRODCUT SERIAL NUMBER | 24 | | 10 PACKING INFORMATION | 25 | | 11 PRECAUTIONS | 27 | | 12 APPENDIX | | | EC. NUMBER SPEC. TITLE | 28 | DAS-RD-2019028-O S8-65-8D-026 DV236FBM-N00 Product Specification Rev.P0 3 OF 35 A4(210 X 297) | PRODUCT GROUP | |---------------| |---------------| REV ISSUE DATE **Customer SPEC** Rev. P0 2022/03/15 #### 1.0 GENERAL DESCRIPTION #### 1.1 Introduction DV236FBM-N10 is a color active matrix TFT LCD MDL using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This MDL has a 23.6 inch diagonally measured active area with 1280*1280 resolutions. Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display 16.7M colors. The TFT-LCD MDL panel is adapted for a low reflection and higher color type. #### 1.2 Features - LVDS interface with 2 pixel / clock - High-speed response - Low color shift image quality - 8-bit color depth, display 16.7M colors - Wide viewing angle - DE (Data Enable) only mode - ADS technology is applied for high display quality - RoHS compliant | SPEC. NUMBER | SPEC. TITLE | PAGE | |--------------|---|---------| | S8-65-8D-026 | DV236FBM-N00 Product Specification Rev.P0 | 4 OF 35 | | BOE | PRODUCT GROUP | REV | ISSUE DATE | |-----|---------------|---------|------------| | | Customer SPEC | Rev. P0 | 2022/03/15 | # 1.3 Application Commercial Digital Display # 1.4 General Specification < Table 1. General Specifications > | Parameter | Specification | Unit | Remarks | |-----------------------|----------------------------|--------|-------------------------| | Active area | 599.424(H) × 599.424(V) | mm | | | Number of pixels | 1280(H) ×1280(V) | pixels | | | Pixel pitch | 468.3(H) ×468.3(V) | um | | | Pixel arrangement | Pixels RGB Vertical stripe | | | | Display colors | 16.7M | colors | 8bits True | | Display mode | Normally Black | | | | Dimensional outline | Ф657х28.65 | mm | Detail refer to drawing | | Weight | TBD | g | | | Power Consumption | 5.4 | Watt | Тур. | | Bezel width (L/R/U/D) | 26.79/26.79/26.79 | mm | | | Surface Treatment | Haze 25% | | | | Back-light | 12- LED Light bar | | | | Possible display type | Landscape | | | | SPEC. NUMBER | SPEC. TITLE | PAGE | |------------------|---|---------------| | S8-65-8D-026 | DV236FBM-N00 Product Specification Rev.P0 | 5 OF 35 | | DAS DD 2010029 O | | 14(210 V 207) | | PRODUCT GROUP | REV | ISSUE DATE | | |---------------|--------|------------|--| | Customer SPEC | Rev PO | 2022/03/15 | | #### 2.0 ABSOLUTE MAXIMUM RATINGS The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit. The operational and non-operational maximum voltage and current values are listed in Table 2. < Table 2. Open Cell Electrical Specifications > [VSS=GND=0V] | Parameter | Symbol | Min. | Max. | Unit | Remark | | |-------------------------------|------------------|---------|------|------------|-----------|--| | Power Supply Voltage | VDD | VSS-0.3 | 13.5 | V | Ta = 25 ℃ | | | Operating Temperature | T _{OP} | 0 | +50 | °C | | | | Storago Tomporaturo | T _{SUR} | -20 | +60 | °C | | | | Storage Temperature | T _{ST} | -20 | +60 | $^{\circ}$ | Note 1 | | | Operating Ambient
Humidity | Нор | 10 | 80 | %RH | I NOTE I | | | Storage Humidity | Hst | 10 | 80 | %RH | | | Note 1 : Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 °C max. and no condensation of water. | SPEC. NUMBER | |--------------| | S8-65-8D-026 | SPEC. TITLE DV236FBM-N00 Product Specification Rev.P0 PAGE 6 OF 35 REV **ISSUE DATE** **Customer SPEC** Rev. P0 2022/03/15 #### 3.0 ELECTRICAL SPECIFICATIONS #### 3.1 TFT LCD Open Cell < Table 3. Open Cell Electrical Specifications > [Ta =25±2 °C] | Parameter | | Cymahal | | Values | | | Domork | |------------|--|---------|------|--------|-------------|------|---------| | | Parameter | Symbol | Min | Тур | Max | Unit | Remark | | Power Sup | ply Input Voltage | VDD | 10.8 | 12 | 13.2 | Vdc | | | Power Sup | ply Ripple Voltage | VRP | - | - | 300 | mV | | | Power Sup | ply Current | IDD | - | 375 | 535 | mΑ | Note 1 | | Power Con | sumption | PDD | - | 4.50 | 6.42 | Watt | ivote i | | Rush curre | nt | IRUSH | - | | 3.0 | Α | Note 2 | | | Differential Input High
Threshold Voltage | VLVTH | +100 | - | +300 | mV | | | LVDS | Differential Input Low
Threshold Voltage | VLVTL | -300 | ı | -100 | mV | | | Interface | Input Differential Voltage | VID | 200 | - | 600 | mV | | | | Common Input Voltage | VLVC | 0.6 | 1.2 | 2.4- VID /2 | V | | | CMOS | Input High Threshold
Voltage | VIH | 2.7 | - | 3.3 | | | | Interface | Input Low Threshold Voltage | VIL | 0 | - | 0.6 | V | | Note 1: The supply voltage is measured and specified at the interface connector of LCM. The current draw and power consumption specified is for VDD=12.0V, Frame rate f_V =60Hz and Clock frequency = 79.0MHz. Test Pattern of power supply current a) Typ: Mosaic 7X5 (L0/L255) b) Max: SUB Pixel c) Flicker Pattern | R | G | В | R | G | В | R | G | В | |---|---|---|---|---|---|---|---|---| | R | G | В | R | G | В | R | G | В | | R | G | В | R | G | В | R | G | В | | R | G | В | R | G | В | R | G | В | | R | G | В | R | G | В | R | G | В | |---|---|---|---|---|---|---|---|---| | R | G | В | R | G | В | R | G | В | | R | G | В | R | G | В | R | G | В | | R | G | В | R | G | В | R | G | В | Note 2: The duration of rush current is about 2ms and rising time of Power Input is 1ms(min) | SPEC. NUMBER | SPEC. TITLE | PAGE | |--------------|---|---------| | S8-65-8D-026 | DV236FBM-N00 Product Specification Rev.P0 | 7 OF 35 | DAS-RD-2019028-O A4(210 X 297) | PRODUCT GROUP | REV | |---------------|-----| | | | Rev. P0 2022/03/15 Customer SPEC Re #### 3.0 ELECTRICAL SPECIFICATIONS 3.2 Backlight Unit < Table 4. Backlight Unit Electrical Specifications > [Ta =25±2 °C] **ISSUE DATE** | [10 2022 6] | | | | | | | | |-----------------------|--------------------|------------------|-------|------|-------|---------|------------| | | | Min. | Тур. | Max. | Unit | Remarks |
 | BLU Supply | Voltage | V _{BLU} | 21.6 | 24 | 26.4 | V | | | BLU Supply | BLU Supply Current | | - | - | 3600 | mA | | | Power Const | umption | P _{BLU} | - | - | 86.4 | Watt | | | LED Forward Voltage | | V _F | - | 3.1 | 3.2 | V | - | | LED Forward Current | | I _F | - | 85 | - | mA | - | | LED Power Consumption | | P _{LED} | | 81.4 | - | W | Note 1 | | LED Life-Tim | ne | N/A | 50000 | - | - | Hour | IF = 100mA | | PWM | PWM High
Level | | 2.5 | - | 3.6 | V | | | Control
Level | PWM Low
Level | | 0 | - | 0.6 | V | | | PWM Control Frequency | | F _{PWM} | 200 | - | 10000 | Hz | | | Duty Ratio | | - | 1 | - | 100 | % | | Notes : 1. Power supply voltage24V for LED Driver, Driver efficiency 87%, Calculator Value for reference IF \times VF \times 96/ 0.87 = PLED 2. The LED Life-time define as the estimated time to 50% degradation of initial luminous. | SPEC. NUMBER | SPEC. TITLE | PAGE | |--------------|---|---------| | S8-65-8D-026 | DV236FBM-N00 Product Specification Rev.P0 | 8 OF 35 | | | | | | PRODUCT GROUP | REV | ISSUE DATE | |---------------|--------|------------| | Customer SPEC | Pov PO | 2022/02/15 | #### 3.3 Backlight Input Pin Assignments #### 3.3.1 Converter1 Interface - BLU Connector(CN2 & CN3): CI0114M1HR0-NH (Cvilux)or Equivalent. < Table 6. Input Connector Pin Configuration CN1&CN2> | Pin No | Symbol | Description | Pin No | Symbol | Description | |--------|--------|---|--------|--------|---| | 1 | VвL | Operating Voltage
Supply, +24V DC
regulated | 8 | GND | Ground and Current
Return | | 2 | VBL | Operating Voltage
Supply, +24V DC
regulated | 0 | GND | Ground and Current
Return | | 3 | VвL | Operating Voltage
Supply, +24V DC
regulated | 10 | GND | Ground and Current
Return | | 4 | VBL | Operating Voltage
Supply, +24V DC
regulated | 11 | NC | No Connection | | 5 | VBL | Operating Voltage
Supply, +24V DC
regulated | 12 | BLON | BLU On-Off control:
DC 0 to 0.8V off, DC
2.5 to 3.6V On | | 6 | GND | Ground and Current
Return | 13 | PWM | 0V:Min, 3.3V:Max | | 7 | GND | Ground and Current
Return | 14 | NC | No Connection | | SPEC. NUMBER | SPEC. TITLE | PAGE | |--------------|---|---------| | S8-65-8D-026 | DV236FBM-N00 Product Specification Rev.P0 | 9 OF 35 | | PRODUCT GROUP | REV | ISSUE DATE | |---------------|--------|------------| | Customer SPEC | Pov PO | 2022/03/15 | #### 3.3 Backlight Input Pin Assignments #### 3.3.2 Converter2 Interface - BLU Connector(CN2 & CN3): CI0114M1HR0-NH (Cvilux)or Equivalent. < Table 7. Input Connector Pin Configuration CN1&CN2> | Pin No | Symbol | Description | Pin No | Symbol | Description | |--------|--------|---|--------|--------|---| | 1 | VвL | Operating Voltage
Supply, +24V DC
regulated | 8 | GND | Ground and Current
Return | | 2 | VвL | Operating Voltage
Supply, +24V DC
regulated | 9 | GND | Ground and Current
Return | | 3 | VвL | Operating Voltage
Supply, +24V DC
regulated | 10 | GND | Ground and Current
Return | | 4 | VвL | Operating Voltage
Supply, +24V DC
regulated | 11 | NC | No Connection | | 5 | VвL | Operating Voltage
Supply, +24V DC
regulated | 12 | BLON | BLU On-Off control:
DC 0 to 0.8V off, DC
2.5 to 3.6V On | | 6 | GND | Ground and Current
Return | 13 | PWM | 0V:Min, 3.3V:Max | | 7 | GND | Ground and Current
Return | 14 | NC | No Connection | | SPEC. NUMBER | SPEC. TITLE | PAGE | |--------------|---|----------| | S8-65-8D-026 | DV236FBM-N00 Product Specification Rev.P0 | 10 OF 35 | # PRODUCT GROUPREVISSUE DATECustomer SPECRev. P02022/03/15 #### 4.0 INTERFACE CONNECTION 4.1 Open Cell Input Signal & Power - LVDS Connector: IS100-L30O-C23(UJU). < Table 4. Open Cell Input Connector Pin Configuration > | Pin No | Symbol | Description | Pin No | Symbol | Description | |--------|--------|---|--------|---------|--| | 1 | RXO0- | Negative Transmission data of
Pixel 0 (ODD) | 16 | RXE1+ | Positive Transmission data of Pixel 1 (EVEN) | | 2 | RXO0+ | Positive Transmission data of
Pixel 0 (ODD) | 17 | GND | Power Ground | | 3 | RXO1- | Negative Transmission data of
Pixel 1 (ODD) | 18 | RXE2- | Negative Transmission data of Pixel 2 (EVEN) | | 4 | RXO1+ | Positive Transmission data of
Pixel 1 (ODD) | 19 | RXE2+ | Positive Transmission data of Pixel 2 (EVEN) | | 5 | RXO2- | Negative Transmission data of
Pixel 2 (ODD) | 20 | RXEC- | Negative Transmission Clock (EVEN) | | 6 | RXO2+ | Positive Transmission data of
Pixel 2 (ODD) | 21 | RXEC+ | Positive Transmission Clock (EVEN) | | 7 | GND | Power Ground | 22 | RXE3- | Negative Transmission data of Pixel 3 (EVEN) | | 8 | RXOC- | Negative Transmission Clock (ODD) | 23 | RXE3+ | Positive Transmission data of Pixel 3 (EVEN) | | 9 | RXOC+ | Positive Transmission Clock (ODD) | 24 | GND | Power Ground | | 10 | RXO3- | Negative Transmission data of
Pixel 3 (ODD) | 25 | SDA_GMA | Panel self test pin please floati
ng | | 11 | RXO3+ | Positive Transmission data of Pixel 3 (ODD) | 26 | SCL_GMA | Panel self test pin please floati
ng | | 12 | RXE0- | Negative Transmission data of
Pixel 0 (EVEN) | 27 | BIST | Panel self test pin please floati
ng | | 13 | RXE0+ | Positive Transmission data of
Pixel 0 (EVEN) | 28 | VDD | | | 14 | GND | Power Ground | 29 | VDD | Power Supply: +12V | | 15 | RXE1- | Negative Transmission data of
Pixel 1 (EVEN) | 30 | VDD | | Notes: 1. Input Level of LVDS signal is based on the EIA-644 Standard. #### Rear view of LCM #### BIST Pattern SPEC. NUMBER S8-65-8D-026 SPEC. TITLE DV236FBM-N00 Product Specification Rev.P0 PAGE 11 OF 35 REV ISSUE DATE **Customer SPEC** Rev. P0 2022/03/15 #### 4.2 LVDS Interface - LVDS Receiver: Timing Controller (LVDS Rx merged) / LVDS Data: Pixel Data < Table 5. Open Cell Input Connector Pin Configuration > | Champal No. | Data Na | 8-bit LVD | S Туре | |-------------|----------|-----------|--------| | Channel No. | Data No. | NS | JEIDA | | | Bit-0 | R0 | R2 | | | Bit-1 | R1 | R3 | | | Bit-2 | R2 | R4 | | 0 | Bit-3 | R3 | R5 | | | Bit-4 | R4 | R6 | | | Bit-5 | R5 | R7 | | | Bit-6 | G0 | G2 | | | Bit-0 | G1 | G3 | | | Bit-1 | G2 | G4 | | | Bit-2 | G3 | G5 | | 1 | Bit-3 | G4 | G6 | | | Bit-4 | G5 | G7 | | | Bit-5 | В0 | B2 | | | Bit-6 | B1 | В3 | | | Bit-0 | B2 | B4 | | | Bit-1 | В3 | B5 | | | Bit-2 | B4 | B6 | | 2 | Bit-3 | B5 | В7 | | | Bit-4 | HS | HS | | | Bit-5 | VS | VS | | | Bit-6 | DE | DE | | | Bit-0 | R6 | R0 | | | Bit-1 | R7 | R1 | | | Bit-2 | G6 | G0 | | 3 | Bit-3 | G7 | G1 | | | Bit-4 | B6 | В0 | | | Bit-5 | В7 | B1 | | | Bit-6 | - | | | SPEC. NUMBER | SPEC. TITLE | PAGE | |--------------|---|----------| | S8-65-8D-026 | DV236FBM-N00 Product Specification Rev.P0 | 12 OF 35 | REV **ISSUE DATE** **Customer SPEC** Rev. P0 2022/03/15 #### 4.3 LVDS Rx Interface Timing Parameter The specification of the LVDS Rx interface timing parameter is shown in Table 6. <Table 6. LVDS Rx Interface Timing Specification> | Item | Symbol | Min | Тур | Max | Unit | Remark | |---------------|--------|---------------|------|--------------|-------|--------------| | CLKIN Period | tRCP | 10 | Т | 40 | nsec | | | Receiver Data | tRMG | -0.45 | - | +0.45 | nsec | fCLKIN=80MHz | | Input Margin | IKIVIG | -0.60 | - | +0.60 | nsec | fCLKIN=75MHz | | Input Data 0 | tRIP1 | - tRMG | 0.0 | tRMG | Clock | | | Input Data 1 | tRIP0 | T/7- tRMG | T/7 | T/7+ tRMG | Clock | | | Input Data 2 | tRIP6 | 2 T/7- tRMG | 2T/7 | 2T/7+ tRMG | Clock | | | Input Data 3 | tRIP5 | 3T/7- tRMG | 3T/7 | 3T/7+ tRMG | Clock | | | Input Data 4 | tRIP4 | 4T/7- tRMG | 4T/7 | 4T/7+ tRMG | Clock | | | Input Data 5 | tRIP3 | 5T/7- tRMG | 5T/7 | 5T/7+ tRMG | Clock | | | Input Data 6 | tRIP2 | 6T/7- tRMG | 6T/7 | 6T/7+ tRMG | Clock | | * Vdiff = (RXz+)-(RXz-),...,(RXCLK+)-(RXCLK-) SPEC. NUMBER SPEC. TITLE DV236F DV236FBM-N00 Product Specification Rev.P0 PAGE 13 OF 35 | PRODUCT GROUP | REV | ISSUE DATE | |---------------|---------|------------| | Customer SPEC | Rev. P0 | 2022/03/15 | #### 4.4 LVDS Rx Interface Eye Diagram < Table 7. LVDS Rx Interface Eye Diagram> | Symbol | Min | Тур | Max | Unit | Note | |--------|-----|------|-----|------|------| | А | - | 100 | - | mV | | | В | - | 100 | - | mV | | | С | - | 0 | - | mV | | | D | - | -100 | - | mV | | | E | - | -100 | - | mV | | | F | - | 0 | - | mV | | Notes: 1. Time F to A,B to C,C to D,E to F is 150p second. - 2. LVDS clock=80Mhz. - 3. The time A to B=1T-2*TRSKM-2*150ps. | SPEC. NUMBER | SPEC. TITLE | PAGE | |------------------|---|-----------------| | S8-65-8D-026 | DV236FBM-N00 Product Specification Rev.P0 | 14 OF 35 | | DAC DD 0040000 O | | A 4/040 \/ 007\ | DAS-RD-2019028-O REV **ISSUE DATE** **Customer SPEC** Rev. P0 2022/03/15 #### 4.5 LVDS Receiver Differential Input < Table 7-1. LVDS Receiver Differential Input> | Symbol | Parameter | Min | Тур | Max | Uni
t | Condition | |-------------------|---|---------------------|-----|---------------------------|----------|-------------| | R _{xVTH} | Differential input high threshold voltage | | | +0.1v | V | RxVCM =1.2V | | R _{xVTL} | Differential input low threshold voltage | -0.1V | | | V | | | R _{XVIN} | Input voltage range
(singled-end) | 0 | 1.2 | 2.4 | V | | | R _{xVCM} | Differential input common mode voltage | V _{ID} /2 | | 2.4- V _{ID} /2 | V | | | V _{ID} | Differential input voltage | 0.1 | | 0.6 | V | | | SPEC. NUMBER | |--------------| | S8-65-8D-026 | | BU | | |----|--| | | | | PRODUCT GROUP | REV | ISSUE DATE
 |---------------|--------|------------| | Customer SPEC | Rev P0 | 2022/03/15 | #### **5.0 SIGNAL TIMING SPECIFICATION** 5.1 Timing Parameters (DE only mode) < Table 8. Timing Table > | Item | | Symbols | | Min | Тур | Max | Unit | |-----------------------------------|-----------|---------|-----------------|------|-------|------|------------------| | | Frequency | 1/Tc | | 78.2 | 79.0 | 79.6 | MHz | | Clock | High Time | Tch | | - | 4/7Tc | - | | | | Low Time | Tcl | | - | 3/7Tc | - | | | Frame Period | | Tv | | 1290 | 1296 | 1300 | lines | | | | | | 57 | 60 | - | Hz | | Horizontal Active
Display Term | | Valid | t _{HV} | - | 960 | - | t _{CLK} | | | | Total | t _{HP} | 1010 | 1016 | 1020 | t _{CLK} | | Vertical Active
Display Term | | Valid | t _{VV} | - | 1280 | - | t _{HP} | | | | Total | t _{VP} | 1290 | 1296 | 1300 | t _{HP} | Notes: This product is DE only mode. The input of Hsync & Vsync signal does not have an effect on normal operation. < Table 9. LVDS Input SSCG> | Symbol | Parameter | Parameter Condition | | | | Unit | |--------------------|---|---|------|---|------|------| | F | LVDS Input frequency | - | 45 | - | 80 | MHz | | T _{LVSK} | LVDS channel to channel skew | $F=75MHz$ $V_{IC}=1.2V$ $V_{ID}=\pm400mV$ | -380 | 1 | +380 | ps | | F _{LVMOD} | Modulating frequency of input cl ock during SSC | | 30 | 1 | 200 | KHz | | F _{LVDEV} | Maximum deviation of input clock frequency during SSC | F=75MHz | -3 | - | +3 | % | | T _{CY-CY} | Cycle to Cycle jitter | | - | - | 100 | ps | | SPEC. NUMBER | SPEC. TITLE | PAGE | |--------------|---|----------| | S8-65-8D-026 | DV236FBM-N00 Product Specification Rev.P0 | 16 OF 35 | REV **ISSUE DATE** **Customer SPEC** Rev. P0 2022/03/15 # 5.2 Signal Timing Waveform | SPEC. NUMBER | |--------------| | S8-65-8D-026 | REV **ISSUE DATE** **Customer SPEC** Rev. P0 2022/03/15 5.3 Input Signals, Basic Display Colors and Gray Scale of Colors < Table 10. Input Signal and Display Color Table > | Color & Gray Scale | | Input Data Signal |--------------------|---------------|-------------------|----|---|---|----------|---|----|----|----------------|----|---|---|----------|---|-----------|----|----|----|---|---|----------|---|----------|----| | Color & G | ray Scale | Red Data | | | | | | | | Green Data | | | | | | Blue Data | | | | | | | | | | | | | R7 | R6 | | | | | R1 | R0 | G7 | G6 | | | | | G1 | G0 | B7 | B6 | | | | | B1 | B0 | | Black | | 0 | | | Blue | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Green | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Basic | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Colors | Red | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Yellow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | White | 1 | | | Black | 0 | |] | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | Darker | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Gray Scale | Δ | <u> </u> | | | | | | | | | | | | <u> </u> | | | | | | | | <u> </u> | | | | | of Red | ▽ | | | | , | _ | | _ | | | | | , | | _ | _ | _ | _ | _ | | | +_ | _ | _ | | | - | Brighter | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | - | $\overline{}$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | - | Black | 0 | | | <u> </u> | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Gray Scale | Darker | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | of Green | | 1 | - | • | 0 | 0 | 0 | 0 | _ | 0 | 0 | 0 | 14141414141014 | | | | 1 | | | | | | | | | | | | | - | Brighter | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | <u>0</u> | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | - | Green | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Black | 0 | | - | | 0 | ō | 0 | 0 | 1 | | • | Darker | 0 | 0 | ŏ | 0 | 0 | 0 | ŏ | 6 | 0 | 0 | 0 | 0 | 0 | ō | 0 | 0 | ō | 0 | 0 | 0 | ō | 0 | 1 | 0 | | Gray Scale | | Ť | | | | <u> </u> | | | | ٣ | | | | <u> </u> | | | | ١Ť | | | | <u> </u> | | <u>'</u> | Ŭ | | of Blue | ∇ | or blue | Brighter | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | | | ∇ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | Blue | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Black | 0 | | | Δ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | Gray Scale | Darker | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 0 | | • | Δ | | | | _ | | | | | | | | | <u> </u> | | | | | | | | <u> </u> | | | | | of White | ∇ | | | | | <u> </u> | | | | | | | | | | | | | | | | <u> </u> | | | | | | Brighter | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | | | ∇ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | White | 1 | | SPEC. NUMBER | |--------------| | S8-65-8D-026 | | PRODUCT GROUP | REV | ISSUE DATE | |---------------|---------|------------| | Customer SPEC | Rev. P0 | 2022/03/15 | #### 5.4 Power Sequence To prevent a latch-up or DC operation of the Open Cell, the power on/off sequence shall be as shown in below < Table 11. Sequence Table > | Parameter · | | Units | | | |-------------|-----|-------|-----|-------| | | Min | Тур | Max | Units | | T1 | 0.5 | - | 20 | ms | | T2 | 10 | - | 100 | ms | | T3 | 200 | - | - | ms | | T4 | 200 | - | - | ms | | T5 | 0 | - | - | ms | | T6 | 1 | - | - | S | Notes: 1. Back Light must be turn on after power for logic and interface signal are valid. - 2. Even though T1 is out of SPEC, it is still ok if the inrush current of VDD is below the limit. - 3. When VDD<0.9VDD(Typ.), Power off. - 4. T7 decreases smoothly, if there were rebounding voltage, it must smaller than 5 volts. | SPEC. NUMBER | SPEC. TITLE | PAGE | |--------------|---|----------| | S8-65-8D-026 | DV236FBM-N00 Product Specification Rev.P0 | 19 OF 35 | | PRODUCT GROUP | REV | ISSUE DATE | |---------------|--------|------------| | Customer SPEC | Roy PO | 2022/03/15 | #### 6.0 OPTICAL SPECIFICATIONS The test of optical specifications shall be measured in a dark room (ambient luminance≤1 lux and temperature=25±2°C) with the equipment of Luminance meter system (Goniometer system and PR730) and test unit shall be located at an approximate distance 180cm from the LCD surface at a viewing angle of θ and Φ equal to 0° . We refer to $\theta_{\varnothing=0}$ (= θ_3) as the 3 o'clock direction (the "right"), $\theta_{\varnothing=90}$ (= θ_{12}) as the 12 o'clock direction ("upward"), $\theta_{\varnothing=180}$ (= θ_{9}) as the 9 o'clock direction ("left") and $\theta_{\varnothing=270}$ (= θ_6) as the 6 o'clock direction ("bottom"). While scanning θ and/or \emptyset , the center of the measuring spot on the Display surface shall stay fixed. The measurement shall be executed after 30 minutes warm-up period. VDD shall be 12.0V at 25°C. Optimum viewing angle direction is 6 'clock. < Table 12. Optical Table > [VDD = 12.0V, Frame rate = 60Hz, Ta = 25 ± 2 °C] | Parame | eter | Symbol | Condition | Min | Тур | Max | Unit | Remark | |----------------------------|------------|-----------------|-------------------|--------|--------|--------|------|----------| | | Horizontal | Θ_3 | | 85 | 89 | 1 | Deg. | | | Viewing | попиона | Θ_9 | CR > 10 | 85 | 89 | ı | Deg. | Note 1 | | Angle | Vertical | Θ ₁₂ | CK > 10 | 85 | 89 | ı | Deg. | I Note i | | | vertical | Θ_6 | | 85 | 89 | - | Deg. | | | Brightn | ess | Lv | | 1250 | 1500 | - | nit | | | Contrast | ratio | CR | | 700:1 | 1000:1 | ı | | Note 2 | | White luminance uniformity | | ΔΥ | | 75 | 80 | - | % | Note 3 | | | White | W _x | | | 0.313 | | | | | | VVIIILE | W _y | Θ = 0° | | 0.329 | | | | | | Red | R_x | (Center) | | TBD | | | | | Reproduction | Neu | R_y | Normal
Viewing | TYP. | TBD | TYP. | | | | of color | Green | G_x | Angle | - 0.03 | TBD | + 0.03 | | Note 4 | | | Green | G_y | | | TBD | | | | | | Blue | B_x | | | TBD | | | | | | Diue | B _y | | | TBD | | | | | Color
Gamut | | | | 68 | 72 | - | % | | | Response Time | G to G | T _g | | 1 | 14 | 20 | ms | Note 5 | **PAGE** SPEC. TITLE S8-65-8D-026 20 OF 35 DV236FBM-N00 Product Specification Rev.P0 SPEC. NUMBER | PRODUCT GROUP | REV | ISSUE DATE | |---------------|--------|------------| | Customer SPEC | Rev P0 | 2022/03/15 | #### Note: - 1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the LCD surface. - 2. Contrast measurements shall be made at viewing angle of θ = 0° and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. (See Figure 1 shown in Appendix) Luminance Contrast Ratio (CR) is defined mathematically. CR = Luminance when displaying a white raster Luminance when displaying a black raster - 3.The White luminance uniformity on LCD surface is then expressed as : $\Delta Y = (Minimum Luminance of 9 points / Maximum Luminance of 9 points) * 100 (See Figure 5 shown in Appendix).$ - 4. The color chromaticity coordinates specified in Table 9.shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel. The BLU is used by BOE. - 5. Response time Tg is the average time required for display transition by switching the input signal as below table and is based on Frame rate fV =60Hz to optimize. Each time in below table is defined as Figure 2 and shall be measured by switching the | | sured | | Target | | | | | | | | | | | | | | | | |-------------|------------|---|--------|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | Resp
Tir | onse
me | 0 | 15 | 31 | 47 | 63 | 79 | 95 | 111 | 127 | 143 | 159 | 175 | 191 | 207 | 223 | 239 | 255 | | | 0 | 15 | 31 | 47 | 63 | 79 | 95 | 111 | | | | | | | | | | | | | | | | | | | Start | 127 | 143 | 159 | 175 | 191 | 207 | 223 | 239 | 255 | | | | | | | | | | | | | | | | | | 5. Definition of Transmittance (T%): Module is with white(L255) signal input | SPEC. NUMBER | SPEC. TITLELuminance of LCD Module | |-------------------------------|------------------------------------| | S8-65-8D-026 ^{Trans} | smittance = | PAGE 21 OF 35 | PRODUCT GROUP | REV | ISSUE DATE | |---------------|--------|------------| | Customer SPEC | Rev P0 | 2022/03/15 | #### 7.0 MECHANICAL CHARACTERISTICS #### 7.1 Dimensional Requirements Figure 3(located in Appendix) shows mechanical outlines for the model DV366FBM-N10 . Other parameters are shown in Table 13. #### < Table 13. Dimensional Parameters > | Parameter | Specification | Unit | |---------------------|---|--------| | Dimensional outline | Ф657х28.65 | mm | | Weight | TBD | gram | | Active area | 599.424(H)*599.424(V) | mm | | Pixel pitch | 468.3(H)*468.3(V) | um | | Number of pixels | 1280(H)*1280(V)(1 pixel = R + G + B dots) | pixels | | Back-light | Down edge side 12-LED Light bar Type | | #### 7.2 Mounting See FIGURE 5. (shown in Appendix) #### 7.3 Anti-Glare and Polarizer Hardness. The surface of the LCD has an anti-glare coating to minimize reflection and a coating to reduce scratching. | SPEC. NUMBER | SPEC. TITLE | PAGE | |--------------|---|----------| | S8-65-8D-026 | DV236FBM-N00 Product Specification Rev.P0 | 22 OF 35 | | PRODUCT GROUP | REV | ISSUE DATE | |---------------|--------|------------| | Customer SPEC | Rev P0 | 2022/03/15 | #### **8.0 RELIABILITY TEST** The Reliability test items and its conditions are shown in below. < Table 14. Reliability Test Parameters > | No | Test Items | | Conditions | | |----|---|---|---|--| | 1 | High temperature storage test | Ta = 85 °C, 240 hrs | 3 | | | 2 | Low temperature storage test | Ta = -30 °C, 240 hr | rs . | | | 3 | High temperature & high humidity operation test | Ta = 50 °C, 80%RI | H, 240hrs | | | 4 | High temperature operation test | Ta = 70 °C, 240hrs | | | | 5 | Low temperature operation test | Ta = -20 °C, 240hrs | S | | | 6 | Thermal shock | $Ta = -20 \text{ °C} \leftrightarrow 60 \text{ °C}$ | °C (0.5 hr), 100 cycle | | | 7 | Vibration test
(non-operating) | Frequency Gravity / AMP Period | 10 ~ 300 Hz, Sweep rate 30 min
1.5 G
X, Y, Z 30 min | | | | | Gravity | 50G | | | 8 | Shock test (non-operating) | Pulse width | 11msec, half sine wave | | | | | Direction | ± X, ± Y, ± Z Once for each | | | 9 | Electro-static discharge test (non-operating) | Air : 150 pF, 330Ω, 15 KV
Contact : 150 pF, 330Ω, 8 KV | | | | 10 | Altitude test | Operating: 0 to 150 | 000ft , 0 to 40°
o 40000ft, -10 to 25° | | This test condition is based on BOE module. | SPEC. NUMBER | SPEC. TITLE | PAGE | |--------------|---|----------| | S8-65-8D-026 | DV236FBM-N00 Product Specification Rev.P0 | 23 OF 35 | # PRODUCT GROUP REV **Customer SPEC** 2022/03/15 **ISSUE DATE** #### 9.0 PRODCUT SERIAL NUMBER - ① FG-CODE - ② Module ID,最后一位为Revision Code(扫描不显示),前17位编 码规则如下 - ③ PPID (客户端ID) - ④ D/PN码,规格待确定 Rev. P0 ⑤ 生产年份+生产周别(中间无空格) #### MDL ID Naming Rule: | Digit | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |-----------------|---|------|-----------|------|----|----|-----------|---------------|--------------------------------------|------------------|--------------|----|----|----|-----------------|----|----| | Code | S | L | S | А | 1 | 0 | 8 | 5 | 9 | 4 | 2 | 0 | 0 | 0 | 1 | D | В | | Descriptio
n | | DDE— | Grad
e | line | Υє | ar | Mont
h | Mode
(Last | el Exte
4 Digi [,]
Dl | nsion
ts of F | Code
G-CO | | | | l No.
ecimal | | | | SPEC. NUMBER | SPEC. TITLE | PAGE | |--------------|---|----------| | S8-65-8D-026 | DV236FBM-N00 Product Specification Rev.P0 | 24 OF 35 | REV **ISSUE DATE** **Customer SPEC** Rev. P0 2022/03/15 #### 10.0 PACKING INFORMATION BOE provides the standard shipping container for customers, unless customer specifies their packing information. The standard packing method and Barcode information are shown in below. #### 10.1 Packing Order 1. Put 1ea EPE Bottom in the box. 2. Put 1pcs MDL put in the PE Bag, then put MDL in the EPE Bottom totally 4ea EPE Bottom, 4pcs M DL, 4ea PE Bag. 3. Put 1ea EPE Cover. 5. Put 8ea Paper Conner and one Top Cover on t he Boxs (12ea MDLs per pallet) and Pack with 4 packing belts. 4. Put the boxes on the pallet (3ea boxe s per pallet) | SPEC. NUMBER | |--------------| | S8-65-8D-026 | | PRODUCT GROUP | REV | ISSUE DATE | | |---------------|---------|------------|--| | Customer SPEC | Rev. P0 | 2022/03/15 | | #### 10.2 Packing Note • Box Dimension: 1106mm(L)×477mm(W)×316mm(H) • Package Quantity in one Box : 4pcs #### 10.3 Box Label • Label Size : 100mm (L) × 50mm (W) • Contents Model: DV236FBM-N00 Q'ty: Module 4 Q'ty in one box Serial No.: Box Serial No. Date: Packing Date XXXXXXXXXXXXX (5) c **FAL** US #### 打印内容,说明如下: - ① FG-CODE - ② 产品数量 - ③ Box ID, 编码规则如下 - ④ Box Packing 日期 - 5) 产品物料号(客户端) - ⑥ FG-CODE 后四位 | Digit
Code | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |-----------------|------------|---|-----------|------|----|-----|-----------|----------------------|------------|----|----|----|----| | Code | X | X | X | X | 1 | 6 | 3 | D | 0 | 0 | 1 | Α | 1 | | Descripti
on | Produ
B | | Gra
de | Line | Υє | ear | Mon
th | Revisi
on
Code | Serial No. | | | | | XXXX **(6)** | SPEC. NUMBER | SPEC. TITLE | PAGE | |--------------|---|----------| | S8-65-8D-026 | DV236FBM-N00 Product Specification Rev.P0 | 26 OF 35 | DAS-RD-2019028-O A4(210 X 297) REV **ISSUE DATE** **Customer SPEC** Rev. P0 2022/03/15 #### 11.0 PRECAUTIONS Please pay attention to the followings when you use this TFT LCD Module. #### 11.1 Mounting Precautions - Use finger-stalls with soft gloves in order to keep display clean during the incoming inspection and assembly process. - You must mount a module using specified mounting holes (Details refer to the drawings) - You should consider the mounting structure so that uneven force (ex. Twisted stress, Concentrated stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module. - Do not apply mechanical stress or static pressure on module; Abnormal display cause by pressing some parts of module during assembly process, do not belong to product failure, the press should be agreed by two sides. - Determine the optimum mounting angle, refer to the viewing angle range in the specification for each model. - Do not apply mechanical stress or static pressure on module, and avoid impact, vibration and falling. - Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction. - Protection film for polarizer on the module should be slowly peeled
off before display. - · Be careful to prevent water & chemicals contact the module surface. - You should adopt radiation structure to satisfy the temperature specification. - Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.) - When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzine. Normal-hexane & alcohol is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene, because they cause chemical damage to the polarizer. - Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.. | SPEC. NUMBER | SPEC. TITLE | PAGE | |--------------|---|-------| | S8-65-8D-026 | DV236FBM-N00 Product Specification Rev.P0 | OF 35 | REV **ISSUE DATE** **Customer SPEC** Rev. P0 2022/03/15 - This module has its circuitry PCB's on the rear side and Driver IC, should be handled carefully in order not to be stressed. - Avoid impose stress on PCB and Driver IC during assembly process, Do not drawing, bending, COF package & wire - · Do not disassemble the module. #### 11.2 Operating Precautions - Do not connector or disconnect the cable to/from the Module at the "Power On" Condition. - When the module is operating, do not lose CLK, ENAB signals. If any one of these signals is lost, the module would be damaged. - Obey the supply voltage sequence. If wrong sequence is applied, the module would be damaged. - · Do not allow to adjust the adjustable resistance or switch - The electrochemical reaction caused by DC voltage will lead to LCD module degradation, so DC drive should be avoided. - The LCD modules use C-MOS LSI drivers, so customers are recommended that any unused input terminal would be connected to Vdd or Vss, do not input any signals before power is turn on, and ground you body, work/assembly area, assembly equipment to protect against static electricity. - Do not exceed the absolute maximum rating value. (supply voltage variation, input voltage variation, variation in part contents and environmental temperature, and so on) Otherwise the Module may be damaged. - Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference. - Design the length of cable to connect between the connector for back-light and the converter as shorter as possible and the shorter cable shall be connected directly, The long cable between back-light and Converter may cause the Luminance of LED to lower and need a higher startup voltage - The cables should be as short as possible between System Board and PCB interface. - Connectors are precision devices to transmit electrical signals, and operators should plug in parallel - Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur. | SPEC. NUMBER | SPEC. TITLE | PAGE | |--------------|---|-------| | S8-65-8D-026 | DV236FBM-N00 Product Specification Rev.P0 | OF 35 | REV ISSUE DATE Customer SPEC Rev. P0 2022/03/15 #### 11.3 Electrostatic Discharge Precautions - Avoid the use work clothing made of synthetic fibers. We recommend cotton clothing or other conductivity-treated fibers. - Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. - Do not close to static electricity to avoid product damage. - · Do not touch interface pin directly. #### 11.4 Precautions for Strong Light Exposure Do not leave the module operation or storage in Strong light . Strong light exposure causes degradation of polarizer and color filter. #### 11.5 Precautions for Storage #### A. Atmosphere Requirement | ITEM | UNIT | MIN | MAX | |------------------------|--|-----|-----| | Storage
Temperature | (°C) | 5 | 40 | | Storage Humidity | (%rH) | 40 | 75 | | Storage Life | 6 months | | | | Storage Condition | The storage room should be equipped with a dark and good ventilation facility. Prevent products from being exposed to the direct sunlight, moisture and water. The product need to keep away from organic solvent and corrosive gas. Be careful for condensation at sudden temperature change. Storage condition is guaranteed under packing conditions. | | | #### B. Package Requirement - The product should be placed in a sealed polythene bag. - Product Should be placed on the pallet, Which is away from the floor, Be cautions not to pile the product up. - The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped. - As the original protective film, do not use the adhesive protective film to avoid change of Pol color and characteristic. | SPEC. NUMBER | SPEC. TITLE | PAGE | |--------------|---|-------| | S8-65-8D-026 | DV236FBM-N00 Product Specification Rev.P0 | OF 35 | REV ISSUE DATE **Customer SPEC** Rev. P0 2022/03/15 #### 11.6 Precautions for protection film - Remove the protective film slowly, keeping the removing direction approximate 30-degree not vertic al from panel surface, If possible, under ESD control device like ion blower, and the humidity of wor king room should be kept over 50%RH to reduce the risk of static charge. - People who peeled off the protection film should wear anti-static strap and grounded well. #### 11.7 Appropriate Condition for Commercial Display -Generally large-sized LCD modules are designed for consumer applications. Accordingly, long-term display like in Commercial Display application, can cause uneven display including image sticking. To optimize module's lifetime and function, several operating usages are required. - 1. Normal operating condition - Temperature: 20±15°C - Operating Ambient Humidity: 55±20% - Display pattern: dynamic pattern (Real display) - Well-ventilated place is recommended to set up Commercial Display system - 2. Special operating condition - a. Ambient condition - Well-ventilated place is recommended to set up Commercial Display system. - b. Power and screen save - Periodical power-off or screen save is needed after long-term display. - c. As the low temperature, the response time is greatly delayed. As the high temperatures (higher than the operating temperature) the LCD module may turn black screen. The above phenomenon cannot explain the failure of the display. When the temperature returns to the normal operating temperature, the LCD module will return to normal display. - d. When expose to drastic fluctuation of temperature (hot to cold or cold to hot) ,the LCD module may be affected; Specifically, drastic temperature fluctuation from cold to hot ,produces dew on the LCD module 's surface which may affect the operation of the polarizer and LCD module e. Do not exceed the absolute maximum rating value. (supply voltage variation, input voltage variation, variation in part contents and environmental temperature, and so on) Otherwise the Module may be damaged. | SPEC. NUMBER | SPEC. TITLE | PAGE | |--------------|---|-------| | S8-65-8D-026 | DV236FBM-N00 Product Specification Rev.P0 | OF 35 | REV **ISSUE DATE** **Customer SPEC** Rev. P0 2022/03/15 f. Product reliability and functions are only guaranteed when the product is used under right operation usages. If product will be used in extreme conditions such as high temperature, high humidity, high altitude, special display images, running time, long time operation, outdoor operation, etc. It is strongly recommended to contact BOE for filed application engineering advice. Otherwise, its reliability and function may not be guaranteed. Extreme conditions are commonly found at airports, transit stations, banks, stock market and controlling systems. - 3. Operating usages to protect against image sticking due to long-term static display. - a. Suitable operating time: under 20 hours a day. - b. Static information display recommended to use with moving image. - Cycling display between 5 minutes' information(static) display and 10 seconds' moving image. - c. Background and character (image) color change - Use different colors for background and character, respectively. - Change colors themselves periodically. - d. Avoid combination of background and character with large different luminance. - 1) Abnormal condition just means conditions except normal condition. - 2) Black image or moving image is strongly recommended as a screen save - 4. Lifetime in this spec. is guaranteed only when Commercial Display is used according to operating usages. #### 11.8 Other Precautions #### A. LC Leak - If the liquid crystal material leaks from the panel, it is recommended to wash the LC with acetone or ethanol and then burn it. - If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap. - If LC
in mouth, mouth need to be washed, drink plenty of water to induce vomiting and follow medical advice. - If LC touch eyes, eyes need to be washed with running water at least 15 minutes. #### B. Rework • When returning the module for repair or etc., Please pack the module not to be broken. We recommend to use the original shipping packages. | SPEC. NUMBER | SPEC. TITLE | PAGE | |--------------|---|-------| | S8-65-8D-026 | DV236FBM-N00 Product Specification Rev.P0 | OF 35 | | $\mathbf{H}(\cdot)$ | | |---------------------|-----| | | - 1 | | PRODUCT GROUP | REV | |---------------|-----| | | | **Customer SPEC** Rev. P0 2022/03/15 **ISSUE DATE** #### **12.0 APPENDIX** < Figure 1. Measurement Set Up > < Figure 2. Response Time Testing > SPEC. NUMBER S8-65-8D-026 SPEC. TITLE DV236FBM-N00 Product Specification Rev.P0 PAGE 32 OF 3 DAS-RD-2019028-O 32 OF 35 | BOE | PRODUCT GROUP | REV | ISSUE DATE | |-----|---------------|---------|------------| | | Customer SPEC | Rev. P0 | 2022/03/15 | #### **12.0 APPENDIX** < Figure 3. Measurement Point Location > | SPEC. NUMBER | SPEC. TITLE | PAGE | |--------------|---|----------| | S8-65-8D-026 | DV236FBM-N00 Product Specification Rev.P0 | 33 OF 35 | | PRODUCT GROUP | REV | |---------------|---------| | Customer SPEC | Rev. P0 | Rev. P0 **ISSUE DATE** 2022/03/15 | SPEC. NUMBER | |--------------| | S8-65-8D-026 | | PRODUCT GROUP | REV | ISSUE DATE | |---------------|---------|------------| | Customer SPEC | Rev. P0 | 2022/03/15 | < Figure 5. White Luminance and Uniformity Measurement Locations > CN1: IS100-L30O-C23(UJU) CN2~CN5:CI0114M1HR0-NH (Cvilux) | SPEC. NUMBER | | |--------------|--| | S8-65-8D-026 | |