Демонстрационно-отладочная плата Eval17. Техническое описание.

1. Общие положения.

Демонстрационно-отладочная плата Eval17 (далее Eval17) предназначена для демонстрации функционирования микроконтроллеров 1886ВЕ6 и их основных периферийных модулей, начальному обучению программированию микроконтроллеров 1886ВЕ6 с помощью прилагаемой демонстрационной программы, отладки собственных проектов с применением установленных на плате блоков и возможностью макетирования дополнительной схемы на монтажном поле платы. Выводы микроконтроллера, используемые в собственных проектах, отсоединяются с помощью легко удаляемых перемычек. Программирование памяти микроконтроллера 1886ВЕ6 осуществляется с помощью внутрисхемного программатора для микроконтроллеров серии 1886ВЕ.

Для демонстрации функционирования, плата Eval17 подключается к COM порту персонального компьютера (далее ПК), или к интерфейсу RS-232 дополнительного внешнего устройства, например, аналогичной демонстрационно-отладочной плате Eval17. Подключение производится с помощью прилагаемого нуль-модемного кабеля. Питание платы осуществляется от адаптера стабилизированного напряжения +5 вольт (для варианта платы без блока LIN интерфейса), или от адаптера +12 вольт (для варианта с блоком LIN интерфейса).

Для демонстрации функционирования используется прилагаемое программное обеспечение: демонстрационная программа, прошиваемая в память программ микроконтроллера 1886ВЕ6, и демонстрационная программа для ПК.

2. Стандартная комплектация Eval17.

- 1. Печатная плата Eval17 (без блока LIN интерфейса).
- 2. Адаптер постоянного тока напряжением +5 вольт.
- 3. Нуль-модемный кабель для СОМ (RS-232) интерфейса.
- 4. Набор программного обеспечения.
- 5. Документация в электронном виде (электрическая и монтажные схемы, комплектация, описание и т.д.).

3. Состав платы.

На демонстрационно-отладочной плате (смотрите рисунок ниже) установлены следующие блоки и компоненты:

1. Контактирующее устройство для установки микроконтроллера 1886BE6 в спутнике. Набор легко удаляемых перемычек, обеспечивающих возможность отключения от схемы выводов микроконтроллера (за исключением выводов питания).

2. Кварцевый резонатор 16 МГц для тактирования микроконтроллера.

Кварцевый резонатор BQ1 подключен к выводам OSC1 и OSC2 микроконтроллера и определяет его тактовую частоту.

3. Переключатель (SW1) включения питания и переключения в режим программирования.

Плата Eval17 питается от адаптера с напряжением +5 вольт в случае варианта платы без LIN интерфейса. Для варианта платы с LIN интерфейсом подключаемый адаптер должен иметь напряжение +12 вольт. Напряжение +5 вольт в этом случае формируется с помощью микросхемы DD1, размещенной в блоке LIN интерфейса. Адаптеры подключаются к разъему XP2. Для включения платы переведите переключатель SW1 в положение «ON».

Необходимо обратить внимание на наличие раздельных аналоговых и цифровых линий питания и «земли». Это требуется для снижения влияния цифровых помех на аналоговые сигналы для АЦП и ЦАП.

4. Разъем (XP2) для подключения внешнего источника питания: +5 вольт или +12 вольт.

Напряжение питания +5 или +12 вольт подается на разъем ХР2.

5. Схема сброса микроконтроллера.

Сброс микроконтроллера осуществляется клавишей SB2 «RESET».

6. Схема для подключения внутрисхемного программатора (XP1).

Для подключения внутрисхемного программатора используется разъем XP1. При программировании памяти программ микроконтроллера выключатель питания SW1 должен находиться в положении «OFF».

Для программирования применяется внутрисхемный программатор для микроконтроллеров серии 1886ВЕ формирующий сигналы MCLR и TEST напряжением +12 вольт. Схема подключения производит преобразование уровней этих сигналов до значения логических уровней.

Программатор формирует напряжение питания только для программируемого микроконтроллера, поэтому на плате предусмотрено, в режиме программирования, разделение линий питания всей платы и программируемого микроконтроллера.

7. Блок интерфейса RS-232.

Блок интерфейса RS-232 реализован на микросхеме 5559ИН4 (возможна установка аналога).

Для работы модуля USART микроконтроллера 1886ВЕ6 с интерфейсом RS-232 необходимо установить перемычки J1 и J2 в положение 2-3.

8. Блок LIN интерфейса.

Блок LIN интерфейса реализован на микросхеме 5559ИН15 (возможна установка аналога). Блок содержит конфигурационную перемычку ЈЗ для включения питания линии LIN интерфейса (для режима ведущего) и клавишу SB1 - локального включения по LIN интерфейсу.

Питание блока LIN интерфейса осуществляется от адаптера с напряжением +12 вольт. Для питания остальной части схемы от этого адаптера, блок содержит микросхему DD1 для формирования напряжения +5 вольт.

Для работы модуля USART микроконтроллера 1886ВЕ6 с LIN интерфейсом необходимо установить перемычки J1 и J2 в положение 1-2.

Примечание. В стандартном варианте комплектации схема блока LIN не монтируется.

9. Схема индикации включения питающих напряжений +5 вольт и +12 вольт.

Индикация напряжения питания +5 вольт включается при переключении выключателя SW1 в положение «ON». Индикация напряжения питания +12 вольт включается при включении адаптера питания на 12 вольт.

10. Индикация состояния ШИМ-выхода PWM1 с помощью светодиода VD9.

Индицирует состояние выхода ШИМ (PWM1) для визуальной оценки скважности сигнала. Максимальная яркость свечения соответствует скважности импульса 100%.

11. Многооборотные подстроечные резисторы R22 и R24 задающие входное напряжение для каналов АЦП (PC2/ADC2 и PC3/ADC3), а также для аналогового компаратора.

Для тестирования внутренних АЦП и аналогового компаратора микроконтроллера установлены подстроечные резисторы, позволяющие задавать напряжение на аналоговых входах в диапазоне от AUcc до AGND.

12. Клавиатура (клавиши SB3 – SB5).

Для управления демонстрационными программами служит клавиатура, состоящая из 4-х клавиш: SB3 – SB5. Выбор сканируемой клавиши определяется портами PD0, PD1, PD4 или PD5, состояние клавиши считывается с порта PC7.

13. Схема индикации из четырех 7+1 сегментных индикаторов DD8 – DD11.

Для индикации результатов работы программы используется 4-х разрядный 7+1 сегментный светодиодный индикатор D8-D11 (светодиодные матрицы с общим катодом). Разряды индикатора (катоды) выбираются портами PD0, PD1, PD4 и PD5. Сегменты (аноды) через токоограничивающие резисторы подключены к сдвиговому регистру DD7, загружаемому с помощью портов PC6 и PC7.

14. Набор универсальных разъемов XP5 и XP6, для подключения измерительных приборов и подачи внешних аналоговых сигналов на периферийные модули микроконтроллера.

На разъемы выведены сигналы:

- выход (OUT) и опорное напряжение (REF) для модулей ЦАП (DAC1 и DAC2);
- опорные напряжения (REF- и REF+) для модуля АЦП;
- два входа модуля АЦП (PC4/ADC4 и PC5/ADC5);
- выход ШИМ (PD3/PWM2);
- цифровой вывод (РА6);
- аналоговые и цифровые питание и «земля» (AUcc, Ucc, AGND, GND).

15. Индикация состояния выхода аналогового компаратора (светодиод VD8).

Индицирует логическое состояние выхода аналогового компаратора: свечение светодиода соответствует логической единице.

16. Монтажное поле для макетирования и отладки собственных проектов.

Внешний вид демонстрационно-отладочной платы Eval17.

4. Демонстрационная программа для микроконтроллера.

Демонстрационная программа для микроконтроллера (далее демопрограмма для МК) написана на языке Assembler. Исходный текст программы, прилагается к комплекту демонстрационной платы (Demo_VE6.asm). Для программирования памяти программ микроконтроллера прилагается .hex файл (Demo_VE6.hex).

Демопрограмма производит демонстрацию функционирования основных модулей микроконтроллера: АЦП, ЦАП, ШИМ, USART и т.д. Демопрограмма для МК выполняет следующие функции:

- Программирует аналоговый компаратор для сравнения напряжений, снимаемых с подстроечных резисторов R22 и R24, и выдачи результата сравнения на светодиод VD8.
- Осуществляет загрузку 12-ти битных данных в ЦАП (DAC1 и DAC2). Загрузка может быть осуществлена с помощью клавиатуры демоплаты или через модуль USART по интерфейсу RS-232 (со скоростью 9600 бит/с).

- Осуществляет загрузку 12-ти битных данных в ШИМ (PWM1 и PWM2). Загрузка может быть осуществлена с помощью клавиатуры демоплаты или через модуль USART по интерфейсу RS-232 (со скоростью 9600 бит/с).
- Осуществляет ввод оцифрованных значений с АЦП (каналы PC2/ADC2, PC3/ADC3, PC4/ADC4 и PC5/ADC5). Результат может быть отображен на индикаторе демоплаты, а также передается через модуль USART по интерфейсу RS-232 (со скоростью 9600 бит/с).

Ввод новых значений данных и просмотр результатов оцифровки сигналов осуществляется с помощью установленных индикаторов и клавиатуры демоплаты:

На индикаторе отображаются:

- номер канала (индикатор DD8);
- значение данных для данного канала в шестнадцатеричном коде (индикаторы DD9, DD10 и DD11).

Для ввода или просмотра значений данных канала выберите номер канала, и если требуется, задайте новое значение (только для каналов соответствующих ЦАП и ШИМ). При приеме по интерфейсу RS-232 новых значений для ЦАП и ШИМ, индицируемое значение обновляется. Соответствие номеров канала и модулей микроконтроллера приведено в таблице:

№ канала	модуль	изменение
		значения
1	АЦП2	только индикация
2	АЦП3	только индикация
3	АЦП4	только индикация
4	АЦП5	только индикация
5	PWM1	разрешен ввод
6	PWM2	разрешен ввод
7	DAC1	разрешен ввод
8	DAC2	разрешен ввод

Мигающая точка индикатора индицирует редактируемый разряд. Выбор разряда осуществляется клавишами SB6 – влево и SB3 – вправо. Изменение значения редактируемого разряда, если оно разрешено, клавишами SB5 – увеличение и SB4 – уменьшение значения.

Демоплата EVAL17 с демонстрационной программой для МК может использоваться в трех режимах:

- Автономно, т.е. управление ШИМ и ЦАП и индикация значений АЦП производится только с помощью демоплаты.
- Совместно с персональным компьютером (далее ПК). Программа на ПК при этом дублирует индикацию и управление модулями демоплаты. Связь с ПК осуществляется через интерфейс RS-232.

Совместно с другой аналогичной демоплатой. При этом значения с АЦП первой демоплаты загружаются в ЦАП и ШИМ второй демоплаты и наоборот (АЦП2->ШИМ1, АЦП3->ШИМ2, АЦП3->ЦАП1, АЦП4->ЦАП2). Работа обоих устройств при этом полностью симметрична. Связь между демоплатами осуществляется через интерфейс RS-232.

Команды по интерфейсу RS-232 передаются с помощью двухбайтных посылок. Демоплата передает посылки с оцифрованными данными каналов АЦП (каналы 1-4), и принимает посылки с данными для ШИМ и ЦАП (каналы 5-8). Кодировка данных в посылке:

1	Ch1	Ch0	D11	D10	D9	D8	D7	0	D6	D5	D4	D3	D2	D1	D0
1 байт						2 байт									

Где: Chxx – номер канала передаваемых/принимаемых данных (2 бита), Dxx – данные (12 бит). Седьмой бит в байтах указывает порядковый номер байта в посылке для синхронизации приема/передачи посылок.

5. Демонстрационная программа для ПК.

Демонстрационная программа для ПК (далее демопрограмма для ПК) прилагается к комплекту демонстрационной платы в виде .exe файла (eval17.exe). Демопрограмма для ПК работает совместно с демопрограммой для микроконтроллера 1886ВЕ6. Она осуществляет обмен командами с демоплатой через СОМ порт. Программа позволяет задать значения для модулей ЦАП и АЦП и индицирует значения, оцифрованные с помощью АЦП.

Поля «ADC2», «ADC3», «ADC4» и «ADC5» индицируют значения, принятые из соответствующих модулей АЦП микроконтроллера демоплаты. В поле «установить» задается значение, которое передается при нажатии одной из клавиш «PWM1», «PWM2», «DAC1» или «DAC2» в соответствующий модуль ШИМ или ЦАП микроконтроллера.

6. Функционирование.

6.1 Установка микроконтроллера 1886BE6 в «спутник-держатель».

Расположение ключа при установке микроконтроллера в «спутник-держатель» приведено на рисунке:

6.2 Программирование памяти программ микроконтроллера.

- 1. Подключите к ПК внутрисхемный программатор и запустите программу управления программатором, например: IDE1886. Для управления программой смотрите руководство пользователя программы.
- 2. Подключите к демоплате с установленным микроконтроллером 1886ВЕ6 внутрисхемный программатор. Выключатель питания SW1 должен находиться в положении «OFF». За-грузите в программу программатора файл Demo_VE6.hex.
- 3. Установите в программе программатора конфигурацию микроконтроллера:
- 3.1. Режим: микроконтроллер.
- 3.2. Сброс по снижению питания: включен.
- 3.3. Сторожевой таймер: выключен.
- 3.4. Режим генератора: XT.
- 4. Произведите, если это необходимо, стирание памяти программ микроконтроллера.
- 5. Произведите запись памяти программ микроконтроллера.
- 6. Отключите внутрисхемный программатор от демоплаты.

6.3 Функционирование демонстрационной платы.

Подключите адаптер постоянного тока с напряжением +5 вольт. Для работы с ПК или другой аналогичной демоплатой используйте нуль-модемный кабель. Включите питание демоплаты выключателем SW1.

Проверьте функционирование демонстрационных программ согласно описанию. При необходимости произведите подключение внешних измерительных приборов и источников сигналов к разъемам XP5/XP6.