

Комплект микросхем 8-разрядных шинных формирователей выходных уровней 5572ИН2АУ, К5572ИН2АУ, К5572ИН2АУК, 5572ИН2БУ, К5572ИН2БУ, К5572ИН2БУК, К5572ИН2АН4, К5572ИН2БН4

ГГ – год выпуска

НН – неделя выпуска

Основные характеристики микросхемы:

- Напряжение питания портов A и B, Ucc от 1,65 до 5,5 B;
- Статический ток потребления, Ісс, не более 30 мкА;
- Количество разрядов данных 8;
- Два независимых домена напряжения питания;

Рабочий диапазон температур:

Обозначение	Диапазон
5572ИН2А(Б)У	минус 60 ÷ 125 °C
К5572ИН2А(Б)У	минус 60 ÷ 125 °C
К5572ИН2А(Б)УК	0 ÷ 70 °C

Тип корпуса:

- 24-выводной металлокерамический корпус Н06.24-1В;
- микросхемы К5572ИН2АН4, К5572ИН2БН4 поставляются в бескорпусном исполнении.

Общее описание и области применения микросхемы

Микросхема представляет собой шинный формирователь выходных уровней.

Микросхема предназначена для сопряжения интерфейсных шин, имеющих разные уровни питающих напряжений. Микросхема предназначена для применения в широкой номенклатуре аппаратуры специального назначения.

1 Описание выводов

Таблица 1 — Описание выводов и контактных площадок (КП) 8-ми разрядного шинного формирователя

№ вывода корпуса микросхемы (К)5572ИН2А(Б)У(К)	№ КП микросхемы К5572ИН2А(Б)Н4	Обозначение вывода	Функциональное назначение выводов
1	23	nOE	Вход разрешения переключения портов (Активный низкий уровень сигнала)
2	24	U _{cc} B	Напряжение питания порта В
3	1	B1	Вход/выход 1-го разряда порта В
4	2	B2	Вход/выход 2-го разряда порта В
5	3	B3	Вход/выход 3-го разряда порта В
6	4	B4	Вход/выход 4-го разряда порта В
7	5	B5	Вход/выход 5-го разряда порта В
8	6	B6	Вход/выход 6-го разряда порта В
9	7	B7	Вход/выход 7-го разряда порта В
10	8	B8	Вход/выход 8-го разряда порта В
11	9	GNDB	Общий порта В
12	9	GNDB	Общий порта В
13	10	GNDA	Общий порта А
14	10	GNDA	Общий порта А
15	12	A8	Вход/выход 8-го разряда порта А
16	13	A7	Вход/выход 7-го разряда порта А
17	14	A6	Вход/выход 6-го разряда порта А
18	15	A5	Вход/выход 5-го разряда порта А
19	16	A4	Вход/выход 4-го разряда порта А
20	17	A3	Вход/выход 3-го разряда порта А
21	18	A2	Вход/выход 2-го разряда порта А
22	19	A1	Вход/выход 1-го разряда порта А
23	21	U _{CC} A	Напряжение питания порта А
24	22	DIR	Вход управления направлением распространения сигнала
_	11, 20*	_	Выбор мощности выходного буфера

^{*} Варианты разварки КП № 11, 20 микросхемы К5572ИН2А(Б)Н4 приведены ниже (таблица 2).

Таблица 2 – Варианты разварки КП № 11, 20 микросхемы К5572ИН2А(Б)Н4

Вариант разварки	№ КП микросхемы К5572ИН2А(Б)Н4	Обозначение КП Функциональное назначен	
^	11	GNDA	Общий порта А
A	20	_	Не развариваются
г	11	_	Не развариваются
Б 20		U _{CC} A	Напряжение питания порта А

2 Структурная блок-схема микросхемы

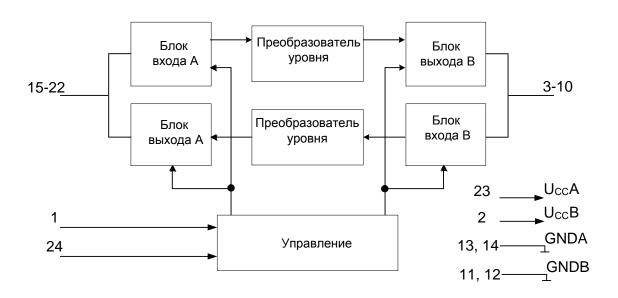


Рис. 1 – Структурная блок-схема микросхемы

3 Указания по применению и эксплуатации

При ремонте аппаратуры и измерении параметров микросхем замену микросхем необходимо проводить только при отключенных источниках питания.

Инструмент для пайки (сварки) и монтажа не должен иметь потенциал, превышающий 0,3 В относительно шины "Общий".

При эксплуатации микросхемы выводы GNDA и GNDB необходимо соединить с шиной "Общий". Помеха на этих выводах не должна превышать 0,02 В.

При эксплуатации микросхем не допускается отключение питания порта А при включенном питании порта В.

Для получения максимального быстродействия микросхем фронты входных сигналов не должны превышать 5 нс.

Порядок подачи и снятия напряжения питания и входных сигналов на микросхемы должен быть следующим:

- подача (включение микросхемы): общий, питание порта А, питание порта В, сигналы управления nOE и DIR, входные сигналы или одновременно;
 - снятие (выключение микросхемы): в обратном порядке или одновременно.

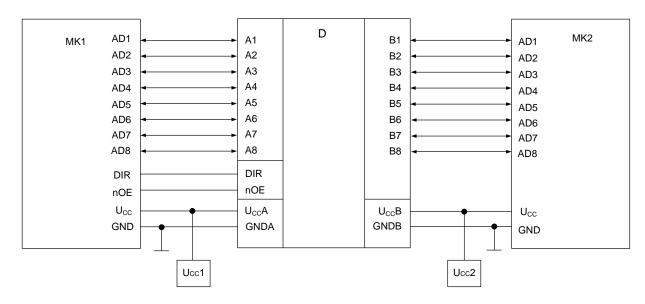
4 Описание функционирования микросхемы

Микросхема представляет собой одноканальный 8-разрядный формирователь уровней выходных сигналов.

Каждый канал имеет автономное питание, информационные порты (A<1:8>, B<1:8>) и сигналы управления nOE и DIR. Входные уровни сигналов управления nOE и DIR должны соответствовать уровню напряжения порта A.

Входы разрядов портов схематически доопределены до уровня логического «0» или «1». Если используемый разряд порта отключить, на входе будет сохраняться последнее логическое состояние. Неиспользуемые входы разрядов портов допускается оставлять свободными.

Таблица 3 — Таблица истинности


Сигналы управления		Пор	ты	Downs
nOE	DIR	А-порт	В-порт	Режим
L	L	Выходные данные	Входные данные	Передача данных из порта-В в порт-А
L	Н	Входные данные	Выходные данные	Передача данных из порта-А в порт-В
Н	Х	Z	Z	Выключен

Н – состояние высокого уровня;

L – состояние низкого уровня;

Х – любое состояние высокого или низкого уровня.

5 Типовая схема включения

D – микросхема или один канал микросхемы.MK1, MK2 – микроконтроллер/блок/устройство.

Если порт В является выходом, а сопряженное с ним устройство МК2 отключено, допускается отключение питания порта В или перевод выходов порта В в состояние «Выключено».

Рис. 2 – Типовая схема включения микросхем

6 Предельно-допустимые характеристики микросхемы

Таблица 4 — Предельно-допустимые и предельные режимы эксплуатации микросхем

	д д д д д д д д д д д д д д д д д д д			раметра	
Наименование параметра, единица измерения	Буквенное обозначение параметра	предельно-			льный ким
	Бу _і 060 па	не менее	не более	не менее	не более
Напряжение питания портов A и B, B	U _{CC} (U _{CCA} и U _{CCB})	1,65	5,5	_	6,0
Входное напряжение высокого уровня портов A и Б, и на выводах nOE и DIR, B, при: $U_{\text{CCI}} = 1,65-1,95 \text{ B};$ $U_{\text{CCI}} = 2,25-2,75 \text{ B};$ $U_{\text{CCI}} = 3,0-3,6 \text{ B};$ $U_{\text{CCI}} = 4,5-5,5 \text{ B}$	U _{IH}	1,5 1,7 2,0 U _{CCI} • 0,7	U _{cci}	_	U _{CCI} +0,3
Входное напряжение низкого уровня портов A и Б, и на выводах nOE и DIR, B, при: $U_{CCI} = 1,65-1,95$ B; $U_{CCI} = 2,25-2,75$ B; $U_{CCI} = 3,0-3,6$ B; $U_{CCI} = 4,5-5,5$ B	UıL	0	U _{CCI} • 0,35 0,7 0,8 U _{CCI} • 0,3	-0,3	-
Напряжение, прикладываемое к портам A и B в состоянии «Выключено», В	Uz	0	U _{CCI}	_	_
Емкость нагрузки, пФ	C_L	-	50	_	_
5572ИН2АУ, К5572ИН2АН4 (вариант	разварн	ки А)			
Выходной ток высокого уровня портов A и B, мA $U_{CC} = 1,65-1,95 \text{ B}; \\ U_{CC} = 2,25-2,75 \text{ B}; \\ U_{CC} = 3,0-3,6 \text{ B}; \\ U_{CC} = 4,5-5,5 \text{ B}$	Іон	-4 -8 -16 -24		-32	
Выходной ток низкого уровня портов A и B, мA $U_{CC} = 1,65-1,95 \text{ B}; \\ U_{CC} = 2,25-2,75 \text{ B}; \\ U_{CC} = 3,0-3,6 \text{ B}; \\ U_{CC} = 4,5-5,5 \text{ B}$	l _{OL}		4 8 16 24		32
5572ИН2БУ, К5572ИН2БН4 (вариант разварки Б)					
Выходной ток высокого уровня портов A и B, мA $U_{CC} = 1,65-1,95 \text{ B}; \\ U_{CC} = 2,25-2,75 \text{ B}; \\ U_{CC} = 3,0-3,6 \text{ B}; \\ U_{CC} = 4,5-5,5 \text{ B}$	Іон	-2 -4 -8 -12		-16	

	ое ние ра		Норма пај	раметра	
Наименование параметра, единица измерения	Буквенное бозначени параметра		ельно- ый режим		льный ким
	Бу ₁ 060 пар	не менее	не более	не менее	не более
Выходной ток низкого уровня					
портов А и В, мА					
$U_{CC} = 1,65 - 1,95 B;$	I _{OL}		2		16
$U_{CC} = 2,25 - 2,75 B;$	·OL		4		.0
$U_{CC} = 3.0 - 3.6 B;$			8		
$U_{CC} = 4,5 - 5,5 B$			12		

Примечание — Не допускается одновременное воздействие двух и более предельных режимов

7 Электрические параметры микросхемы

Таблица 5 – Электрические параметры микросхем при приёмке и поставке

	ле 1 т е		ома	o o
Наименование параметра,	HE TEN	параі	иетра	ату , °(
единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температура среды, °С
Выходное напряжение высокого уровня портов A и B, B, при: $U_{CC} = 1,65-1,95$ B; $U_{CC} = 2,25-2,75$ B; $U_{CC} = 3,0-3,6$ B; $U_{CC} = 4,5-5,5$ B	U _{ОН}	1,2 1,9 2,4 3,8	- - -	25, 125, –60
Выходное напряжение низкого уровня портов A и B, B, при: $U_{CC} = 1,65-1,95$ B; $U_{CC} = 2,25-2,75$ B; $U_{CC} = 3,0-3,6$ B; $U_{CC} = 4,5-5,5$ B	UoL	- - - -	0,45 0,4 0,55 0,55	25, 125, –60
Входной ток на выводах nOE и DIR, мкА	I _{I1}	-10	10	25, 125, –60
Входной ток выводов портов A и B в статическом режиме, мкA, при: Unoe = Ucc	I _{I2}	-10	10	25, 125, –60
Входной ток переключения портов A и B из высокого в низкий уровень, мкA, при: $U_{CC} = 1,65-1,95$ B; $U_{CC} = 2,25-2,75$ B; $U_{CC} = 3,0-3,6$ B; $U_{CC} = 4,5-5,5$ B	I _{IHL}	-30 -40 -50 -60	1	25, 125, –60
Входной ток переключения портов A и B из низкого в высокий уровень, мкA, при: $U_{CC} = 1,65-1,95$ B; $U_{CC} = 2,25-2,75$ B; $U_{CC} = 3,0-3,6$ B; $U_{CC} = 4,5-5,5$ B	I _{ILH}	-	30 40 50 60	25, 125, –60
Статический ток потребления (суммарный), мкА,	I _{cc}	_	30	25, 125, –60
Время распространения входного сигнала порта A или B, нс, при: $U_{\text{nOE}} = 0$ B, $U_{\text{DIR}} = U_{\text{CCA}}$ для $U_{\text{CCI}} = U_{\text{CCA}}$, $U_{\text{CCO}} = U_{\text{CCB}}$ и $U_{\text{DIR}} = 0$ B, для $U_{\text{CCI}} = U_{\text{CCB}}$, $U_{\text{CCO}} = U_{\text{CCA}}$ при: $U_{\text{CCI}} = 1,65 - 1,95$ B, $U_{\text{CCO}} = 1,65 - 5,5$ B $U_{\text{CCI}} = 2,25 - 2,75$ B, $U_{\text{CCO}} = 1,65 - 5,5$ B $U_{\text{CCI}} = 3,0 - 3,6$ B, $U_{\text{CCO}} = 1,65 - 5,5$ B $U_{\text{CCI}} = 4,5 - 5,5$ B, $U_{\text{CCO}} = 1,65 - 5,5$ B	t _{PHL} t _{PLH}	_	40 35 30 25	25, 125, –60

Наименование параметра,	ное ение тра	-	ома метра	тура
единица измерения, режим измерения	Буквен обознач параме	не менее	не более	Темпера; среды,
Время задержки распространения входного сигнала по сигналу nOE , нс, при: $U_{\text{DIR}} = U_{\text{CCA}}$ для $U_{\text{CCI}} = U_{\text{CCA}}$, $U_{\text{CCO}} = U_{\text{CCB}}$ или $U_{\text{DIR}} = 0$ В для $U_{\text{CCI}} = U_{\text{CCB}}$, $U_{\text{CCO}} = U_{\text{CCA}}$	t _{PHZ} , t _{PLZ}			25, 125,
при: U _{CCI} = 1,65 – 1,95 В, U _{CCO} = 1,65 – 1,95 В	t _{PZH,} t _{PZL}		45	- 60
$U_{CCI} = 1,65 - 1,95 \text{ B}, \ U_{CCO} = 2,25 - 2,75 \text{ B}$ $U_{CCI} = 1,65 - 1,95 \text{ B}, \ U_{CCO} = 3,0 - 3,6 \text{ B}$			40 35	
$U_{CCI} = 1,65 - 1,95 \text{ B}, \ U_{CCO} = 4,5 - 5,5 \text{ B}$			30	

Примечания:

 U_{CCI} – питание порта на который поступает передаваемый сигнал. Для порта А $U_{\text{CCI}} = U_{\text{CCA}}$, для порта В $U_{\text{CCI}} = U_{\text{CCB}}$.

 U_{CCO} – питание порта, из которого выходит передаваемый сигнал. Для порта А $U_{\text{CCO}} = U_{\text{CCA}}$, для порта В $U_{\text{CCO}} = U_{\text{CCB}}$

Микросхемы устойчивы к воздействию статического электричества с потенциалом не менее 2 000 В.

8 Справочные данные

Значение собственной резонансной частоты не менее 15,1 кГц.

Тепловое сопротивление кристалл-корпус не более 16,77 °C/Вт.

Предельная температура p-n перехода кристалла 150 °C.

Максимальное значение емкости вывода микросхемы на частотах менее 1 МГц не превышает:

- 1,0 пФ для $U_{CC} = 1,8 B;$
- 10,7 пФ для Ucc = 2,5 B;
- 10,5 пФ для U_{CC} = 3,3 B;
- 10,2 пФ для U_{CC} = 5,0 B.

Дополнительные параметры микросхемы приведены в таблице 6.

Значения импульсной электрической прочности (ИЭП) и предельнодопустимых одиночных импульсов напряжения (ОИН) приведены в таблице 7.

Типовые значения частоты передачи данных в зависимости от напряжения питания входного и выходного каналов приведены в таблице 8.

Таблица 6 - Справочные данные

Наименование параметра,	Наименование параметра, Наименование параметра		Норма параметра		
единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температура среды, °С	
Динамический ток потребления, мА,					
$U_{CCA} = U_{CCB} = 5,5 B$					
при f * = 5 МГц для - 5572ИН2АУ			5		
для - 5572ИН2АУ для - 5572ИН2БУ		_	4		
A.M. 00127111283			·	25,	
при f = 25 МГц	locc			125,	
для - 5572ИН2АУ		_	21	-60	
для - 5572ИН2БУ		_	17		
при f = 50 МГц					
для - 5572ИН2АУ		_	37		
для - 5572ИН2БУ		_	30		
* f – частота передаваемых импульсных сигналов					

Таблица 7 - Показатели ИЭП микросхем

	Предельно-допустимое напряжение ОИН, В				
Тип вывода	Длительность ОИН, мкс				
	0,1	10			
Входы	300 100 75				
Выходы	- 150 -				
Цепь питания	1500 1200 1000				

	Расчетная предельно-допустимая энергия ОИН, мДж					
	Длительность ОИН, мкс					
	0,1 1 10					
Входы	5,6•10 ⁻² 6,7•10 ⁻² 2,1•10 ⁻¹					
Выходы	- 9,7•10 ⁻² -					
Цепь питания	1,3 7,2 29					

Таблица 8 – Типовые значения частоты передачи данных при t_r = t_f ≤ 1,6 нс

Напряжение	Частота передачи данных, МГц				
питания канала	Напряжение питания канала входного сигнала, В				
выходного сигнала, В	1,8 2,5 3,3				
1,8	70	70 80 90			
2,5	100	130	150		
3,3	110	170	190		
5,0	120	180	200		

9 Временные диаграммы

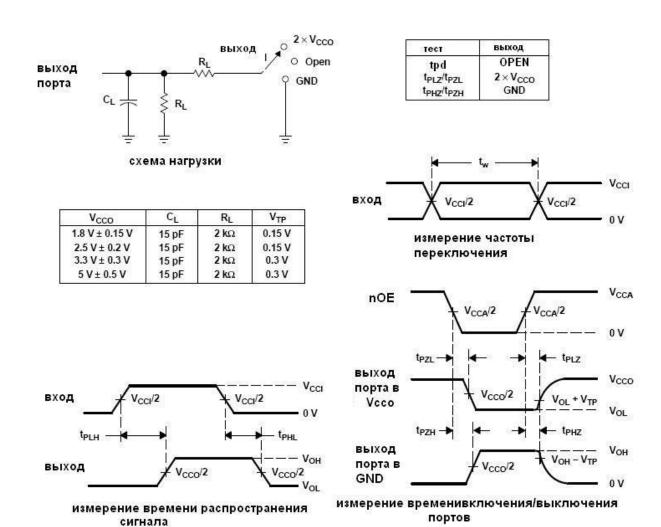


Рис. 3 – Временные диаграммы

10 Максимальная рабочая частота

Измерения проводились при комнатной температуре окружающей среды на тестовой плате с запаянной микросхемой, без резистора нагрузки, без конденсатора нагрузки. К выходу микросхемы подключен осциллограф Tektronix DPO7254 с щупом Tektronix P6158. С генератора сигнала Agilent 81130A на вход микросхемы подавался меандр на нагрузку 50 Ом, время фронта и спада входного сигнала $t \le 1,6$ нс. Сигнал передавался из канала «В» в канал «А» микросхемы. Критерием определения максимальной частоты являлось уменьшение амплитуды выходного сигнала.

Таблица 9

	UccB = 1,8 B	UccB = 2,5 B	UccB = 3,3 B	UccB = 5,0 B
UccA = 1,8 B	70 МГц	80 МГц	90 МГц	уточняется
UccA = 2,5 B	100 МГц	130 МГц	150 МГц	уточняется
UccA = 3,3 B	110 МГц	170 МГц	190 МГц	уточняется
UccA = 5,0 B	120 МГц	180 МГц	200 МГц	уточняется

11 Время распространения сигнала от входа к выходу и времени задержки включения/отключения

Измерения проводились при температуре окружающей среды 25 °C без резистора нагрузки, без конденсатора нагрузки, к выходу подключен щуп осциллографа Agilent DSO9104A Cmin щупа на 1 МОм = 10 пФ (на щупе указан диапазон от 10 пФ до 22 пФ).

Измерения t_{PLH}/t_{PHL} проводились по уровню 50 % задаваемого и выходного сигнала. При измерении t_{PLZ}/t_{PZL} к выходу подключается резистор R=2 кОм на UccA или UccB. При измерении t_{PHZ}/t_{PZH} к выходу подключается резистор R=2 кОм на землю. Длительность задаваемого фронта/спада по nOE равна 5 нс. Измерения проводились по уровню 50 % задаваемого nOE, 0.9*Ucc и 0.1*Ucc для выходного сигнала для t_{PHZ} и t_{PLZ} соответственно.

t_г – время нарастания входного сигнала.

Таблица 10

UccA = 1,8 B									
Цаправлогиа	Попольт	UccB = 1,8 B		UccB = 2,5 B		UccB = 3,3 B		UccB = 5 B	
Направление	Параметр	t _r =5HC	t _r =36нс	t _r =5 HC	t _r =36нс	t _r =5HC	t _r =36нс	t _r =5нс	t _r =36нс
АвВ	t _{PLH} , HC	11,2	18,0	8,4	15,2	7,4	14,2	6,7	13,6
ARD	t _{PHL} , HC	10,2	14,3	7,1	11,3	6,1	10,2	5,3	9,4
ВвА		t _r =5HC	t _r =5нс t _r =36нс		tr=50нс	tr=5HC	t _r =33HC	t _r =5HC	t _r =25HC
	t _{PLH} , HC	11,1	17,8	9,7	13,6	9,4	11,5	9,6	11,9
	tphl, HC	10,1	14,2	9,1	11,2	8,9	10,8	9,0	10,6
nOE к A	tрнz, нс	TBD		FBD		15,0		TBD	
IIOL KA	t _{PLZ} , HC	TBD		TBD		15,3		TBD	
nOE к В	tрнz, нс	11,8		10,2		9,9		9,5	
HOL K B	tplz, HC	12	2,3	10,6		10,2		9,5	
nOE к A	t _{PZH} , HC	TE	3D	TBD		14,5		TBD	
IIOE KA	t _{PZL} , HC	TE	3D	TBD		15,1		TBD	
-OF D	t _{PZH} , HC	11	,8	8,8		7,7		7,0	
nOE к B	t _{PZL} , HC	15	5,2	10),6	8,9		7,8	

Таблица 11

UccA = 2,5 B									
Цопровления	Пополиона	UccB :	= 1,8 B	UccB = 2,5 B		UccB = 3,3 B		UccB = 5 B	
Направление	параметр	t _r =5HC	tr=50HC	t _r =5 HC	tr=50нс	t _r =5HC	tr=50HC	t _r =5HC	tr=50нс
АвВ	tplh, HC	9,8	13,9	6,9	10,9	5,9	9,9	5,2	9,2
ABD	t _{PHL} , HC	9,1	11,7	6,0	8,5	4,9	7,5	4,2	6,6
ВвА		t _r =5HC	tr=36нс	tr=5 HC	t _r =50HC	tr=5HC	t₁=33нс	t _r =5HC	t _r =25HC
	tplh, HC	8,2	14,9	6,7	10,7	6,4	8,5	6,6	8,9
	tphl, HC	7,0	11,1	6,0	8,0	5,8	7,7	5,8	7,4
nOE к A	t _{PHZ} , HC	TBD		(BD)		10,3		TBD	
HOL KA	t _{PLZ} , HC	TBD		TBD		10,2		TE	3D
nOE к B	t _{PHZ} , нС	9	,8 🔍	8,4		8,1		7,4	
HOL K B	tplz, HC	10	0,7	8,6		8,1		7,5	
nOE к A	tрzн, нс 👖	TE	3D	TBD		8,4		TBD	
HOL KA	tpzl, HC	[™] TE	3D	TBD		8,7		TBD	
nOE к B	t _{PZH} , HC	10),2	7	,1	6,0		5,2	
IIOL K D	t _{PZL} , HC	13	3,5	8	,8	7,1		5,9	

Таблица 12

	The state of the s								
UccA = 3,3 B									
Цаправлациа	Попомото	UccB =	= 1,8 B	UccB = 2,5 B		UccB = 3,3 B		UccB = 5 B	
Направление	параметр	t _r =5HC	tr=33HC	t _r =5 HC	tr=33HC	t _r =5HC	t _r =33HC	t _r =5HC	tr=33HC
АвВ	t _{PLH} , нс	9,5	11,7	6,6	8,8	5,5	7,8	4,8	7,0
ABD	tphl, HC	8,9	11,0	5,8	7,9 🗸	4,7	6,7	3,9	5,8
ВвА		t _r =5нс t _r =36нс		t _r =5 HC	tr=50HC	t _r =5HC	t _r =33HC	t _r =5HC	tr=25HC
	t _{PLH} , HC	7,2	13,9	5,7	9,7	5,4	7,5	5,5	7,9
	tphl, HC	6,0	10,1	4,9	6,9	4,6	6,5	4,7	6,2
nOE к A	tphz, HC	TBD		TBD		8,5		TBD	
IIOL KA	tplz, HC	TBD		TBD		8,7		TBD	
nOE к B	tphz, HC	9.3		7,7		7,4		6,7	
HOL K B	tplz, HC	9,9		8,0		7,5		6,9	
nOE к A	tpzh, HC	TE	3D	TBD		6,5		TBD	
IIOL KA	tpzl, HC	TE	3D	TBD		6,6		TBD	
nOE к B	tpzн, нс	9	,8	6,7		5,6		4,8	
IIOL K B	tpzl, HC	13	3,2	8	,4	6,7		5,5	

Таблица 13

UccA = 5 B									
Нопровление		UccB =	= 1,8 B	UccB = 2,5 B		UccB = 3,3 B		UccB = 5 B	
Направление	параметр	t _r =5HC	t _r =25HC	t _r =5 HC	t _r =25HC	t _r =5HC	t _r =25HC	t _r =5HC	t _r =25нс
A D	t _{PLH} , HC	9,7	12,0	6,7	9,0	5,7	8,0	4,9	7,3
АвВ	tphL, HC	9,0	10,7	5,9	7,5	4,7	6,3	3,7	4,0
ВвА		t _r =5HC	t _r =36нс	t _r =5 HC	t _r =50нс	tr=5HC	t₁=33нс	t _r =5HC	t _r =25HC
	t _{PLH} , HC	6,5	13,3	5,0	9,2	4,6	6,8	4,8	7,2
	t _{PHL} , HC	5,2	9,3	4,1	6,0	3,8	5,6	3,6	3,9
пОЕ к А	t _{PHZ} , HC	TBD		FBD		7,5		TBD	
IIOE KA	tplz, HC	TBD		TBD		7,5		TBD	
nOE к B	tрнz, нс	9,3		7,7		7,1		6,7	
IIOE K D	tplz, HC	10),0	8,1		7,3		6,8	
nOE к A	tpzh, HC	TE	3D	TBD		5,3		TBD	
IIOE KA	t _{PZL} , HC	TE	3D	TBD		5,3		TBD	
- OF D	tpzн, нс	9	,7	6,6		5,4		4,7	
nOE к B	t _{PZL} , HC	13	3,1	8	,3	6	,5	5,3	

12 Типовые зависимости

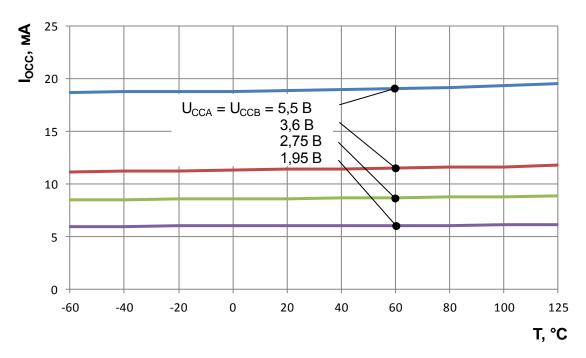
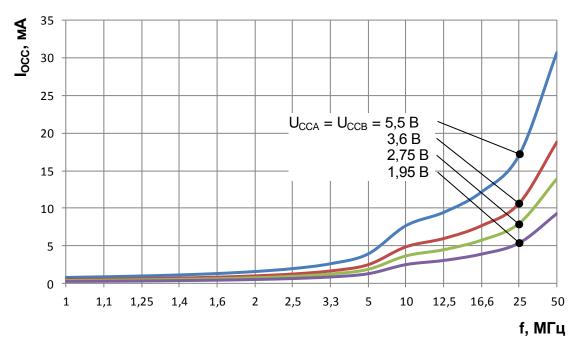
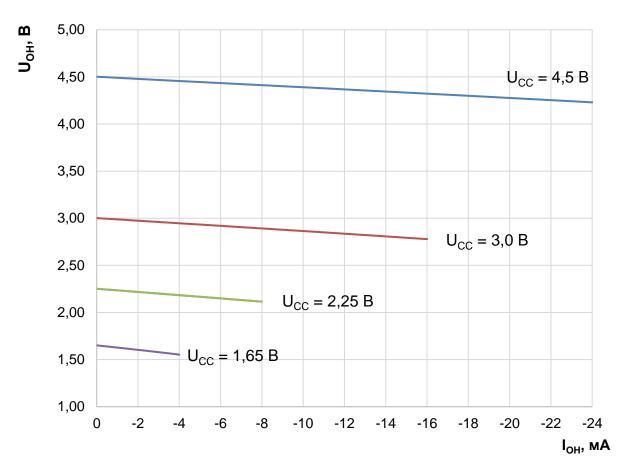
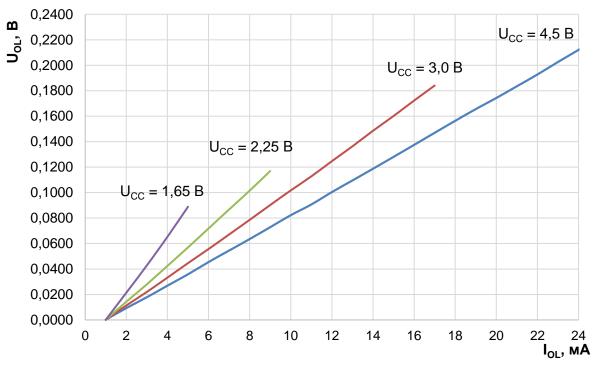
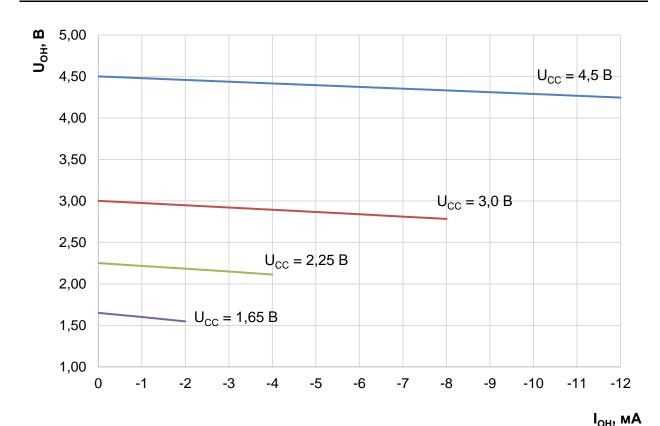
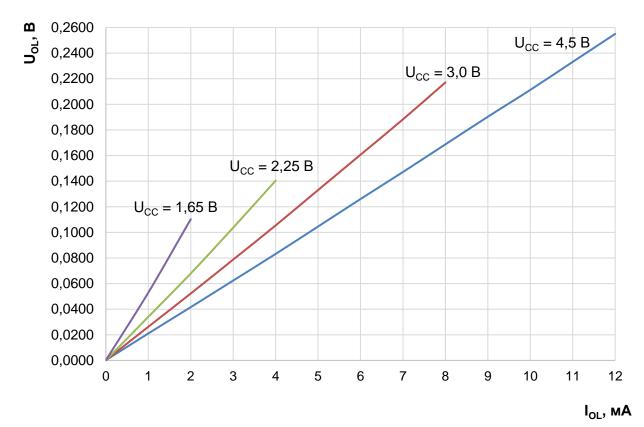




Рис. 4 — Зависимость динамического тока потребления (без нагрузки) locc от температуры при f = 25 МГц

Рис. 5 — Зависимость динамического тока потребления (без нагрузки) I осс от частоты при T = 20 °C

Рис. 6 — Зависимость выходного напряжения высокого уровня U_{OH} от выходного тока высокого уровня I_{OH} микросхем 5572ИН2АУ при температуре среды 25 °C

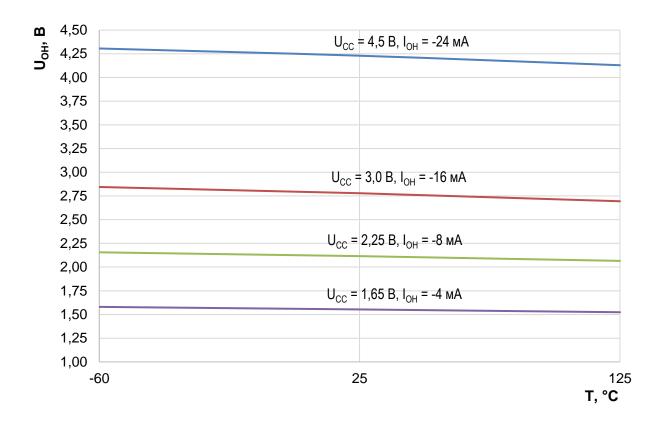

Рис. 7 — Зависимость выходного напряжения низкого уровня U_{OL} от выходного тока низкого уровня I_{OL} микросхем 5572ИН2АУ при температуре среды 25 °C

Рис. 8 – Зависимость выходного напряжения высокого уровня U_{OH} от выходного тока высокого уровня I_{OH} микросхем 5572ИН2БУ при температуре среды 25 °C

Рис. 9 – Зависимость выходного напряжения низкого уровня U_{OL} от выходного тока низкого уровня I_{OL} микросхем 5572ИН2БУ при температуре среды 25 °C

Рис. 10 – Зависимость выходного напряжения высокого уровня U_{OH} от температуры среды микросхем 5572ИН2АУ

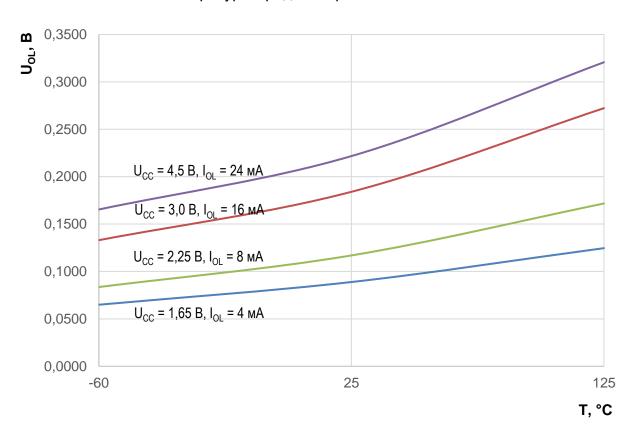
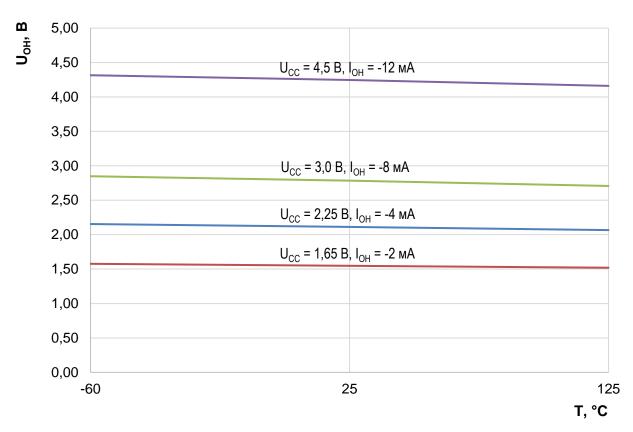



Рис. 11 — Зависимость выходного напряжения низкого уровня U_{OL} от температуры среды микросхем 5572ИН2АУ

Рис. 12 — Зависимость выходного напряжения высокого уровня U_{OH} от температуры среды микросхем 5572ИН2БУ

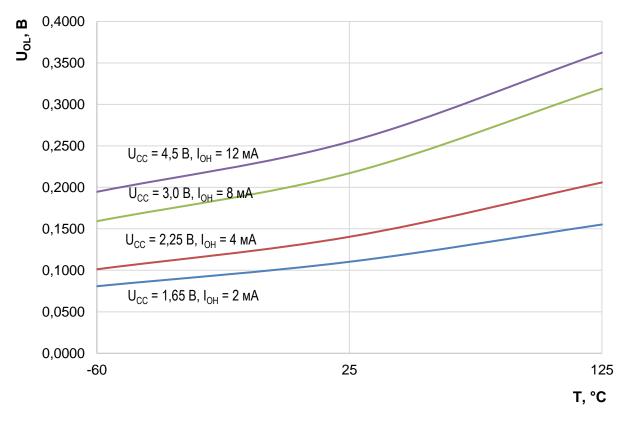


Рис. 13 – Зависимость выходного напряжения низкого уровня U_{OL} от температуры среды микросхем 5572ИН2БУ

13 Габаритный чертеж микросхемы

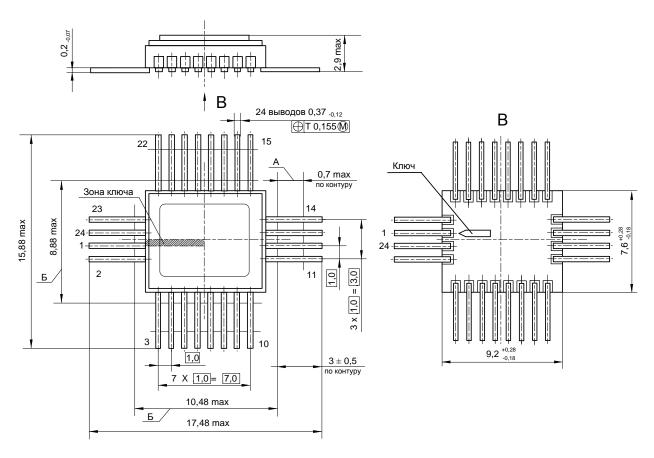
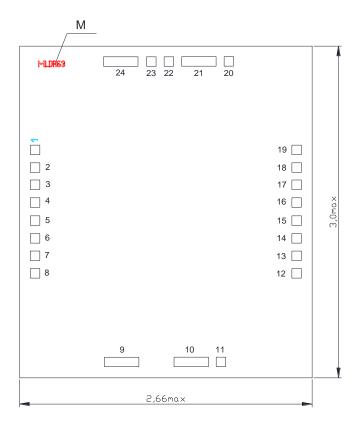



Рис. 14 – Габаритный чертеж микросхемы в корпусе Н06.24-1В

Размеры КП № 9, 21, 24 – 286 × 85 мкм2; а остальных – 85 × 85 мкм2

- 1. Номера контактным площадкам (КП), кроме первой, присвоены условно и их расположение соответствует топологическому чертежу.
- 2. М маркировка кристалла MLDR63.
- 3. Толщина кристалла (0,445±0,015) мм.

Рис. 15 – Кристалл (бескорпусное исполнение)

Таблица 14 - Координаты КП

№ КП	Обозначе-	Коорди	Координаты КП		Обозначе-	Координаты КП		
Nº KII	ние КП	Х	Υ	Nº K∏	ние КП	Х	Υ	
1	B1<1>	-1136,25	539,20	13	A1<7>	1136,25	-385,10	
2	B1<2>	-1136,25	385,15	14	A1<6>	1136,25	-231,05	
3	B1<3>	-1136,25	231,10	15	A1<5>	1136,25	-77,00	
4	B1<4>	-1136,25	77,05	16	A1<4>	1136,25	77,05	
5	B1<5>	-1136,25	-77,00	17	A1<3>	1136,25	231,10	
6	B1<6>	-1136,25	-231,05	18	A1<2>	1136,25	385,15	
7	B1<7>	-1136,25	-385,10	19	A1<1>	1136,25	539,20	
8	B1<8>	-1136,25	-539,15	20	VAR_VDD	598,60	1306,30	
9	GNDB	-280,75	-1306,30	21	VDDA	359,80	1306,30	
10	GNDA	280,75	-1306,30	22	DIR	122,10	1306,30	
11	VAR_GND	521,25	-1306,30	23	nOE	-32,90	1306,30	
12	A1<8>	1136,25	-539,15	24	VDDB	-359,80	1306,30	

14 Информация для заказа

Обозначение	Маркировка	Тип корпуса	Температурный диапазон
5572ИН2АУ	ИН2А	H06.24-1B	минус 60 – 125 °C
К5572ИН2АУ	КИН2А	H06.24-1B	минус 60 – 125 °C
К5572ИН2АУК	КИН2А∙	H06.24-1B	0 – 70 °C
5572ИН2БУ	ИН2Б	H06.24-1B	минус 60 – 125 °C
К5572ИН2БУ	КИН2Б	H06.24-1B	минус 60 – 125 °C
К5572ИН2БУК	КИН2Б•	H06.24-1B	0 – 70 °C

Примечание — Микросхемы в бескорпусном исполнении поставляются в виде отдельных кристаллов, получаемых разделением пластины. Микросхемы поставляются в таре (кейсах) без потери ориентации. Маркировка микросхем — К5572ИН2АН4 или К5572ИН2БН4 наносится на тару.

Микросхемы с приемкой «ВП» маркируются ромбом. Микросхемы с приемкой «ОТК» маркируются буквой «К».

Лист регистрации изменений

№ п/п	Дата	Версия	Краткое содержание изменения	№№ изменяемых листов	№№ новых листов
1	19.12.2012	1.0.1	Доработка по предложениям потребителя		
2	03.07.2013	1.1.1	Добавлено описание функционирования микросхемы, таблицы с параметрами	4-8	
3	01.08.2013	1.2.1	Исправление таблицы электрических параметров микросхемы	7, 8	
4	02.08.2013	1.2.2	Редактирование теста и таблиц	1,4,7,12	
5	01.11.2013	1.3.2	Исправлен габаритный чертеж микросхемы	11	
6	05.12.2013	1.4.2	Исправлена маркировка микросхем	12	
7	09.12.2013	1.5.2	Исправлена маркировка микросхемы на рисунке	1	
8	25.03.2014	2.0.0	Добавлено описание измерений времени распространения сигнала и времени задержки, таблицы с параметрами. Добавлены рисунки зависимостей динамического тока потребления		10-13
9	04.04.2014	2.0.1	Редактирование таблицы 3	5	
10	07.04.2014	2.0.2	Редактирование рисунка	1	
11	22.07.2014	2.1.0	Добавлен раздел Максимальная рабочая частота		10
12	25.05.2015	2.2.0	Введена микросхема в бескорпусном исполнении	По тексту	
13	15.06.2015	2.3.0	Исправление в таблице электрических параметров микросхемы	8	
14	02.09.2015	2.4.0	Исправления в таблице описания выводов	2	
15	25.02.2016	2.5.0	Добавлены подразделы «Указания по применению и эксплуатации», «Справочные данные», «Типовая схема включения»	7, 9, 14	
16	10.06.2016	2.6.0	Исправлены габаритные размеры кристалла на рис. 7	20	
17	28.01.2020	2.7.0	Добавлены максимальные значения емкости вывода. Добавлены зависимости (рис. 6 – 13)	12	20 - 23
18	16.06.2020	2.7.1	Исправлены опечатки на рис. 12, 13	23	20 20