

PROPRIETARY NOTE

THIS SPECIFICATION IS THE PROPERTY OF BOE DT AND SHALL NOT BE
REPRODUCED OR COPIED WITHOUT THE WRITTEN PERMISSION OF BOE DT AND
MUST BE RETURNED TO BOE DT UPON ITS REQUEST

TITLE : MV315QUM-N40-A942

Product Specification Ver. O

FUZHOU BOE OPTOELECTRONICS CO., LTD

SPEC. NUMBER	PRODUCT GROUP	Ver. O	ISSUE DATE	PAGE
S8-64-8D-438	TFT-LCD		2024.06.27	1 OF 33

PRODUCT GROUP

REV

ISSUE DATE

TFT- LCD PRODUCT

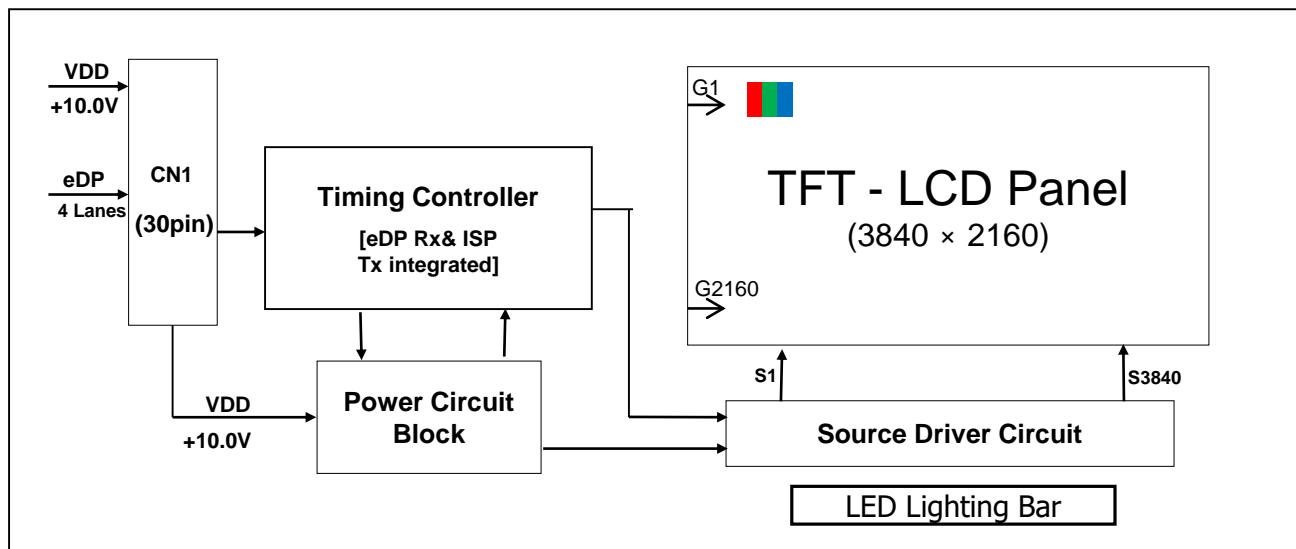
Rev. O

2024.06.27

REVISION HISTORY

REV.	ECN No.	DESCRIPTION OF CHANGES	DATE	PREPARED
P0	-	Initial Release	2023/06/07	Bright.Chen
P1	-	Update P8/P10/P17/P18/P32/P33	2023/10/18	Bright.Chen
P2	-	Update P10/P24	2023/11/07	Yajie Guo
P3	-	Update P7/13/17/18	2023/11/14	Yajie Guo
P4	-	Updates RGB color coordinates	2024/06/27	Hongyu Zhao

SPEC. NUMBER
S8-64-8D-438SPEC. TITLE
MV315QUM-N40 Specification Rev. OPAGE
2 OF 33


Contents

No.	Item	Page
1.0	General Description	4~5
2.0	Absolute Maximum Ratings	6
3.0	Electrical Specifications	7~9
4.0	Optical Specifications	10~11
5.0	Interface Connection	12~19
6.0	Signal Timing Interface	20
7.0	Signal Timing Waveforms of Interface Signal	21
8.0	Power Sequence	22
9.0	Mechanical Characteristics	23
10.0	Reliability Test	24
11.0	Handling& Cautions	25~26
12.0	Product Serial Number	27
13.0	Packing	28~29
14.0	Appendix	30~33

1.0 GENERAL DESCRIPTION

1.1 Introduction

MV315QUM-N40 is a color active matrix TFT LCD module using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This module has a 31.5 inch diagonally measured active area with UHD resolutions (3840 horizontal by 2160 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display 1.07B colors. The TFT-LCD panel used for this module is adapted for a low reflection and higher color type.

1.2 Features

- Reverse Type
- 4 lane eDP Interface with 5.4Gbps Link Rates
- 10bit (input) color depth, display 1.07B colors (8bit+FRC output)
- Incorporated edge type back-light (LED)
- Compatible with sRGB Matching Ratio 100% (typ.), @CIE 1931; Compatible with DCI-P3 Matching Ratio 95% (typ.), @CIE 1976
- High luminance and contrast ratio, low reflection and wide viewing angle
- DE (Data Enable) only
- RoHS/Halogen Free
- TUV low blue light panel
- Gamma Correction

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-64-8D-438	MV315QUM-N40 Specification Rev. O	4 OF 33

1.3 Application

- Desktop Type of PC & Workstation Use
- Slim-Size Display for Stand-alone Monitor
- Display Terminals for Control System
- Monitors for Process Controller

1.4 General Specification

The followings are general specifications at the model MV315QUM-N40.

<Table 1. General Specifications>

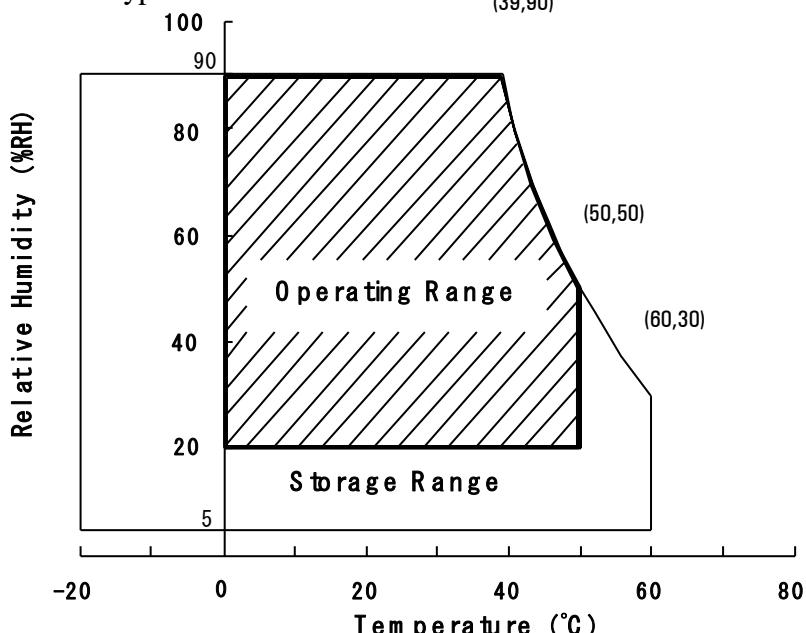
Parameter	Specification	Unit	Remarks
Active area	697.3056(H) × 392.2344 (V)	mm	
Active Screen Size	31.5 inches	cm	
Number of pixels	3840(H) ×2160 (V)	pixels	
Pixel pitch	0.18159(H) ×0.18159(V)	mm	
Pixel arrangement	RGB Vertical stripe		
Color Depth	1.07B (10Bit)	colors	8bit+FRC
Display mode	Normally Black		
Dimensional outline	709.5(H) × 412(V) × 11(D) Typ.	mm	
Weight	3060 (Typ.)	g	
AA~Outline (L/R/U/D)	6.097/6.097/5.5/14.266	mm	
Surface Treatment	Haze 25%, 3H		
Back-light	Horizontal arranged, 1-LED Light bar Type		

2.0 ABSOLUTE MAXIMUM RATINGS

The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit. The operational and non-operational maximum voltage and current values are listed in Table 2.

< Table 2. Absolute Maximum Ratings >

[VSS=GND=0V]


Parameter	Symbol	Min.	Max.	Unit	Remarks
Power Supply Voltage	V _{DD}	-0.3	10.5	V	T _a = 25 °C
Operating Temperature	T _{OP}	0	+50	°C	1)
Storage Temperature	T _{ST}	-20	+60	°C	1)
LCM Surface Temperature (Operation)	T _{Surface}	0	+65	°C	2)

Note : 1) Temperature and relative humidity range are shown in the figure below.

Wet bulb temperature should be 39 °C max. and no condensation of water.

2) Panel Surface Temperature should be Min. 0 °C and Max. +65 °C under the VDD = 10.0V, Frame rate = 60Hz, 25 °C ambient Temp. no humidity control and LED string current is typical value.

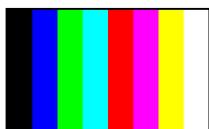
(39,90)

3.0 ELECTRICAL SPECIFICATIONS**3.1 Electrical Specifications**

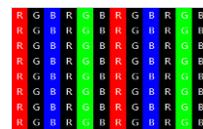
< Table 3. Electrical specifications >

[Ta =25±2 °C]

Parameter.		Min.	Typ.	Max.	Unit	Remarks
Power Supply Voltage	V _{DD}	9.5	10.0	10.5	V	Note1
Power Supply Current	I _{DD Typ.}	-	700	770	mA	
	I _{DD max}	-	1360	1500	mA	
In-Rush Current	I _{RUSH}	-	2.0	3.0	A	Note 2
Permissible Input Ripple Voltage	V _{RF}	-	-	400	mV	Note1,3
Power Consumption	P _{D Typ} -60Hz	-	7	7.7	W	Note1,5
	P _{D Color} -60Hz	-	9	9.9	W	
	P _{D Max} -60Hz	-	13.6	15	W	
	P _{BL}	-	40.6	45.6	W	
	P _{total Typ.}	-	47.6	53.3	W	
	P _{total Max}		54.2	60.6	W	Note 6


Note : 1. The supply voltage is measured and specified at the interface connector of LCM.

The current draw and power consumption specified is for VDD=10.0V, Frame rate=60Hz

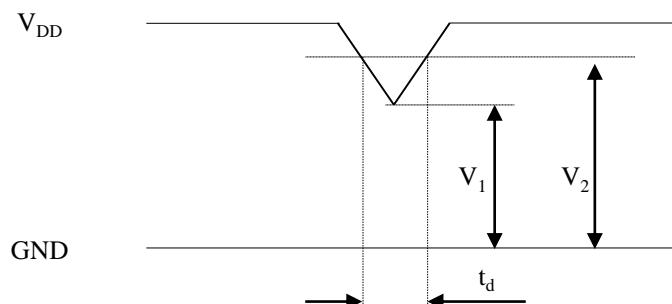

Clock frequency = 533 MHz. Test Pattern of power supply current is

a) Typ : Full white

b) Color Test

c) Max : Vertical Subline 255

2. Duration of rush current is about 2 ms and rising time of VDD is $520 \mu s \pm 20\%$.


3. Ripple Voltage should be covered by Input voltage Spec.

4. Calculated value for reference (Input pins*VPIN \times IPIN) excluding inverter loss.

5. For logic power consumption, it is measured under patterns of Note 1.

6. Test measure refer to Energy Star 8.0 Program Requirements@200nit.

7. For proper operation, stable power supply of VDD is necessary and power dip is allowed only in below condition. Except this condition, power on/off should follow power sequence specification exactly.

$V_1 = 7.5$ V, $V_2 = 8.3$ V, $t_d = 50$ ms.

3.2 Backlight Unit

< Table 3. Backlight Unit Electrical Specifications >

[Ta =25±2 °C]

Parameter		Min.	Typ.	Max.	Unit	Remarks
LED Light Bar Input Voltage Per Input Pin	VPIN	-	55.8	59.4	V	Duty 100%
LED Light Bar Input Current Per Input Pin	IPIN	-	91	96	mA	Note1,2,
LED Power Consumption	P _{BL}		40.6	45.6	W	Note 3
LED Life-Time	-	30,000	-		Hrs	Note 4

LED bar consists of 144LED packages, 2 light bars*4 strings(parallel)*18packages(serial)

Note1: There are two light bar ,and the specified current is input LED chip 100% duty current

Note2: The sense current of each input pin is 91mA

Note3: PBL=2*4 Input pins*VPIN ×IPIN

Note4: The lifetime is determined as the time at which luminance of LED become 50% of the initial brightness or not normal lighting at IPIN=91mA on condition of continuous operating at 25 ±2 °C

< Table 5. LED Backlight Unit @Peak Brightness>

Parameter		Min.	Typ.	Max.	Unit	Remarks
LED Light Bar Input Voltage Per Input Pin	VPIN	-	57.6	61.2	V	Duty 100%
LED Light Bar Input Current Per Input Pin	IPIN	-	115	-	mA	Note 5, 6
MDL peak brightness	-	600	700	-	nit	

Note5: Peak brightness is used for HDR600 test only. Long time use at peak brightness or reliability testing at peak brightness will affect productor life and even cause issue

Note 6, 115mAis a reference value, the actual current setting needs to be set according to the specific L255, Local diming is required to implement HDR600

4.0 OPTICAL SPECIFICATION

4.1 Overview

The test of Optical specifications shall be measured in a dark room (ambient luminance ≤ 1 lux and temperature = $25\pm2^{\circ}\text{C}$) with the equipment of Luminance meter system (Goniometer system and TOPCONE PR730) and test unit shall be located at an approximate distance 50cm from the LCD surface at a viewing angle of θ and Φ equal to 0° . We refer to $\theta_{\phi=0}$ ($=\theta_3$) as the 3 o'clock direction (the "right"), $\theta_{\phi=90}$ ($=\theta_{12}$) as the 12 o'clock direction ("upward"), $\theta_{\phi=180}$ ($=\theta_9$) as the 9 o'clock direction ("left") and $\theta_{\phi=270}$ ($=\theta_6$) as the 6 o'clock direction ("bottom"). While scanning θ and/or ϕ , the center of the measuring spot on the Display surface shall stay fixed. The measurement shall be executed after 30 minutes warm-up period. VDD shall be $10.0\text{V} +/- 5\%$ at 25°C . Optimum viewing angle direction is 6 'clock.

4.2 Optical Specifications

[VDD = 10.0V , Frame rate = 60Hz , Clock = 533MHz , $I_{BL} = 2*4*91\text{mA}$, , $T_a = 25\pm 2^{\circ}\text{C}$]
 < Table 5. Module Optical >

Parameter		Symbol	Condition	Min	Typ	Max	Unit	Remark		
Viewing Angle	Horizontal	Θ_3	CR > 10	85	89		Deg.	Note 1		
		Θ_9		85	89		Deg.			
	Vertical	Θ_{12}		85	89		Deg.			
		Θ_6		85	89		Deg.			
Luminance Contrast ratio		CR	$\Theta = 0^{\circ}$	980	1400	-		Note 2		
Luminance of White		L_v	$\Theta = 0^{\circ}$	440	550		nit	Note 3		
White luminance uniformity		$\Delta Y9$		75%				Note 4		
Reproduction of color	White	W_x	$\Theta = 0^{\circ}$ (Center) Normal Viewing Angle	0.313				Note 5 (模拟值)		
		W_y		0.329						
	Red	R_x		0.679						
		R_y		0.318						
	Green	G_x		0.267						
		G_y		0.658						
	Blue	B_x		0.142						
		B_y		0.050						
Color Gamut sRGB@CIE1931				99%	100%	-				
Color Gamut DCI-P3@CIE 1976				-	95%	-	%			
Response Time	G to G	T_g		-	14	20	ms	Note 6		
Gamma Scale				2.0	2.2	2.4				

Note :

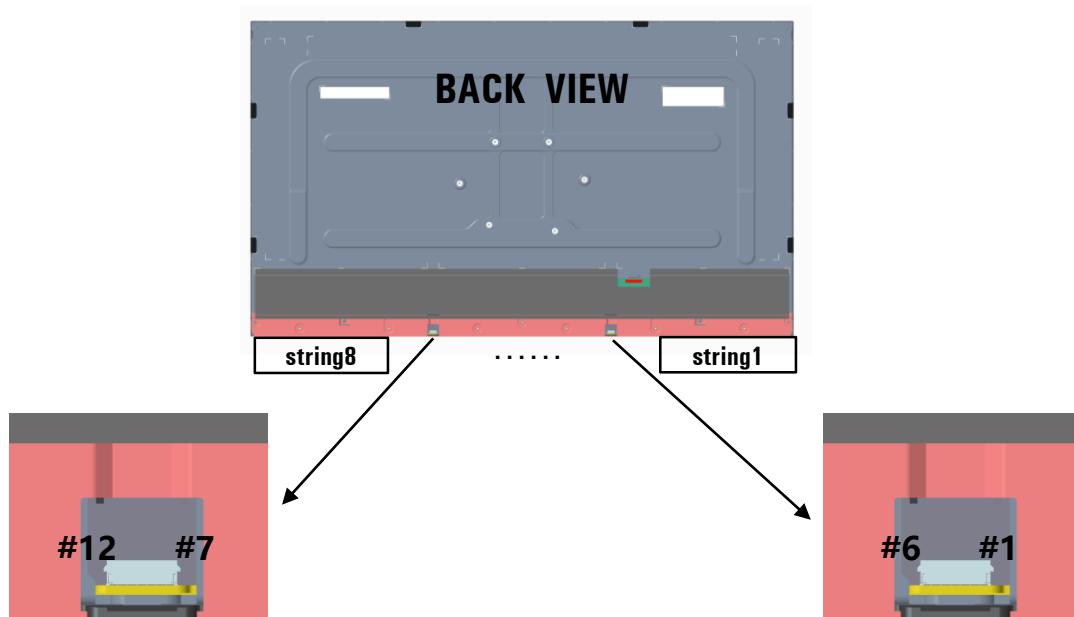
1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the LCD surface.
2. Contrast measurements shall be made at viewing angle of $\theta= 0^\circ$ and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. (See FIGURE 1 shown in Appendix) Luminance Contrast Ratio (CR) is defined mathematically.

$$CR = \frac{\text{Luminance when displaying a white raster}}{\text{Luminance when displaying a black raster}}$$

3. Center Luminance of white is defined as the LCD surface. Luminance shall be measured with all pixels in the view field set first to white. This measurement shall be taken at the locations shown in FIGURE 2 for a total of the measurements per display.
4. The White luminance uniformity on LCD surface is then expressed as :

$$\Delta Y = (\text{Minimum Luminance of 9points} / \text{Maximum Luminance of 9points}) * 100$$
(See FIGURE 2 shown in Appendix).
5. The color chromaticity coordinates specified in Table 5. shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.
6. Response time T_g is the average time required for display transition by switching the input signal as below table and is based on Frame rate $f_V = 60\text{Hz}$ to optimize.

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-64-8D-438	MV315QUM-N40 Specification Rev. O	11 OF 33

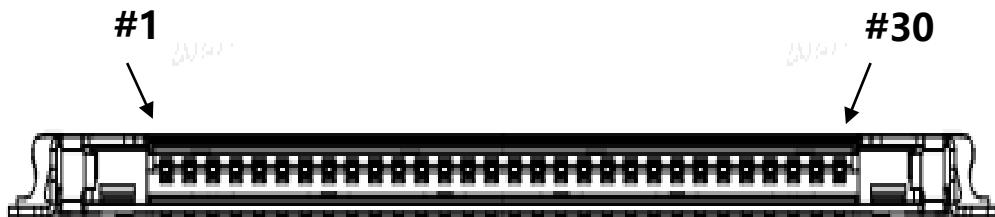
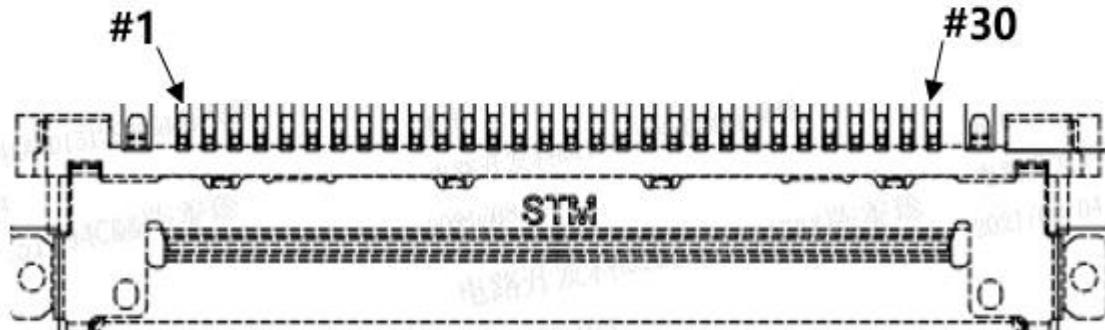

5.0 INTERFACE CONNECTION.

5.1.1 LED Light Bar

-LED connector: CNJST A12511AWV-06 or EQUIVALENT

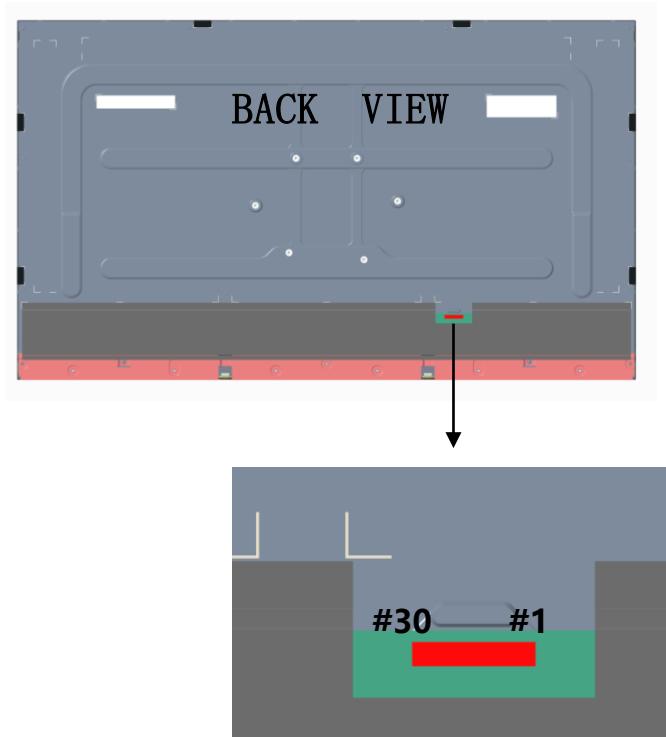
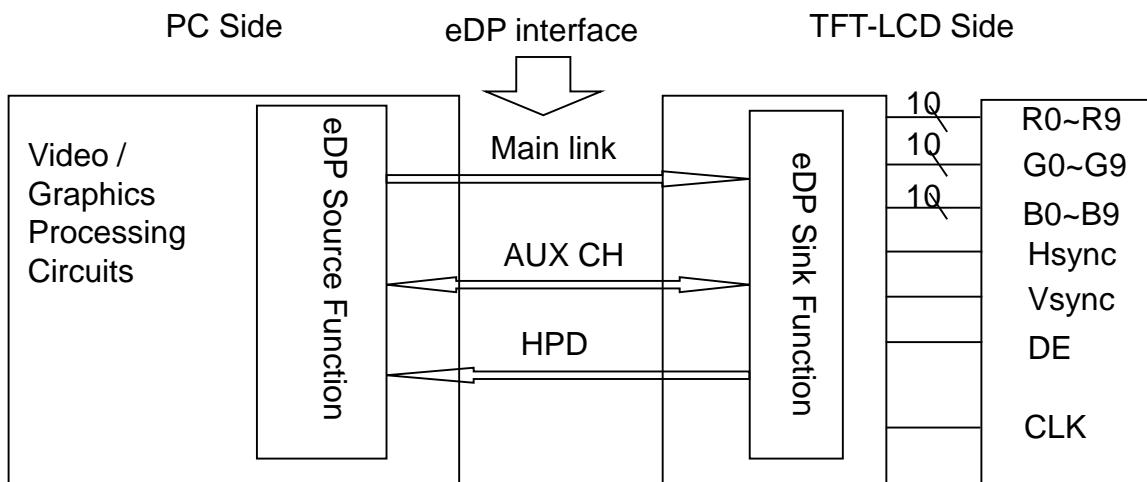
< Table 6. LED Light Bar>

Pin No	Symbol	Description
1	IRLED1	LED current sense for string1
2	IRLED2	LED current sense for string2
3	VLED	LED power supply
4	VLED	LED power supply
5	IRLED3	LED current sense for string3
6	IRLED4	LED current sense for string4
7	IRLED5	LED current sense for string5
8	IRLED6	LED current sense for string6
9	VLED	LED power supply
10	VLED	LED power supply
11	IRLED7	LED current sense for string7
12	IRLED8	LED current sense for string8

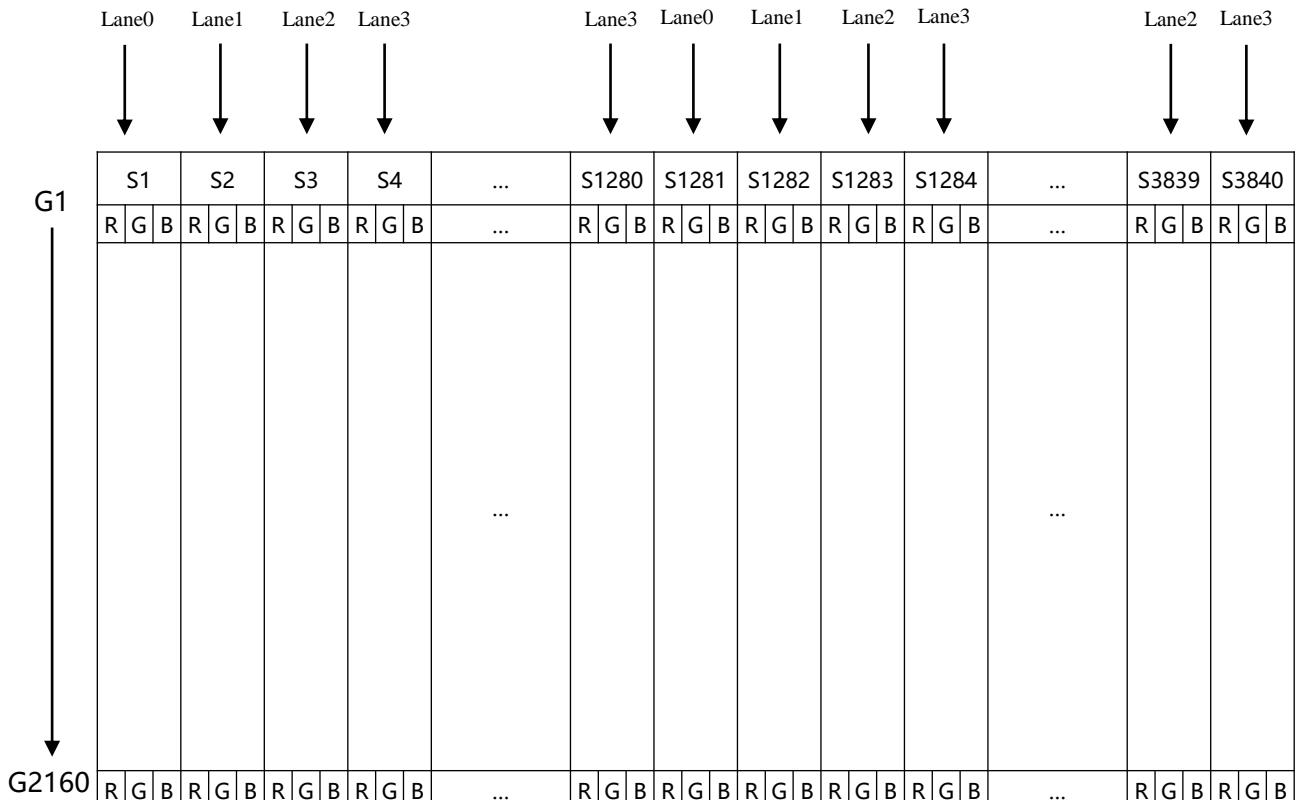


SPEC. NUMBER	SPEC. TITLE	PAGE
S8-64-8D-438	MV315QUM-N40 Specification Rev. O	12 OF 33

5.1.2 Electrical Interface Connection

- CN1 Module Side Connector : STM MSAK24025P30 or 20455-030E-66.



Pin No	Symbol	Function	Remark
1	VDD	Power Supply (10.0V)	
2	VDD	Power Supply (10.0V)	
3	VDD	Power Supply (10.0V)	
4	VDD	Power Supply (10.0V)	
5	VDD	Power Supply (10.0V)	
6	NC	No connection	
7	GND	Ground	
8	NC	No connection	
9	NC	No connection	
10	GND	Ground	
11	HPD	Hot Plug Detection Signal	
12	GND	Ground	
13	DAUXN	Negative Signal for Auxiliary Chanel	
14	DAUXP	Positive Signal for Auxiliary Chanel	
15	GND	Ground	
16	DRX0P	Positive Signal For eDP Lane0	
17	DRX0N	Negative Signal For eDP Lane0	
18	GND	Ground	
19	DRX1P	Positive Signal For eDP Lane1	
20	DRX1N	Negative Signal For eDP Lane1	
21	GND	Ground	
22	DRX2P	Positive Signal For eDP Lane2	
23	DRX2N	Negative Signal For eDP Lane2	
24	GND	Ground	
25	DRX3P	Positive Signal For eDP Lane3	
26	DRX3N	Negative Signal For eDP Lane3	
27	GND	Ground	
28	NC	No connection	
29	NC	No connection	
30	NC	No connection	Reserved for BIST Function

5.1.3 Connector Diagram



5.2 eDP Interface

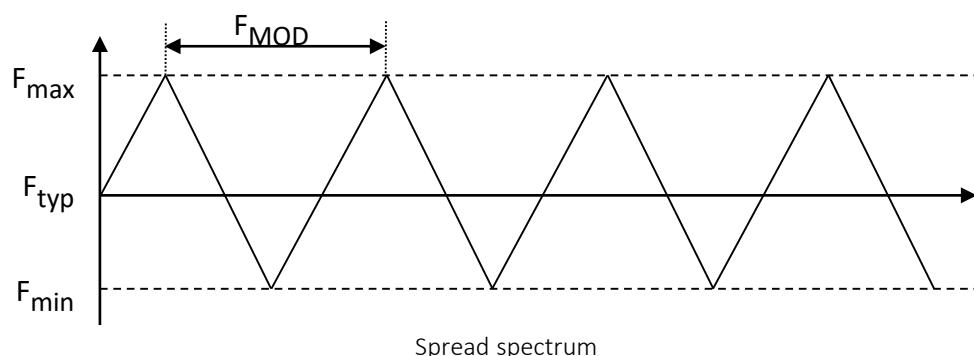
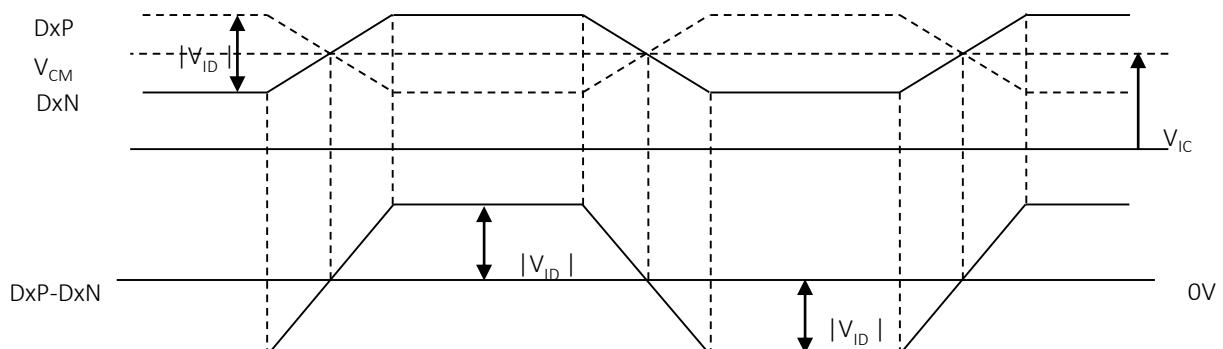
- eDP Data Transport Channels

5.3 eDP Pixel Format

Note:

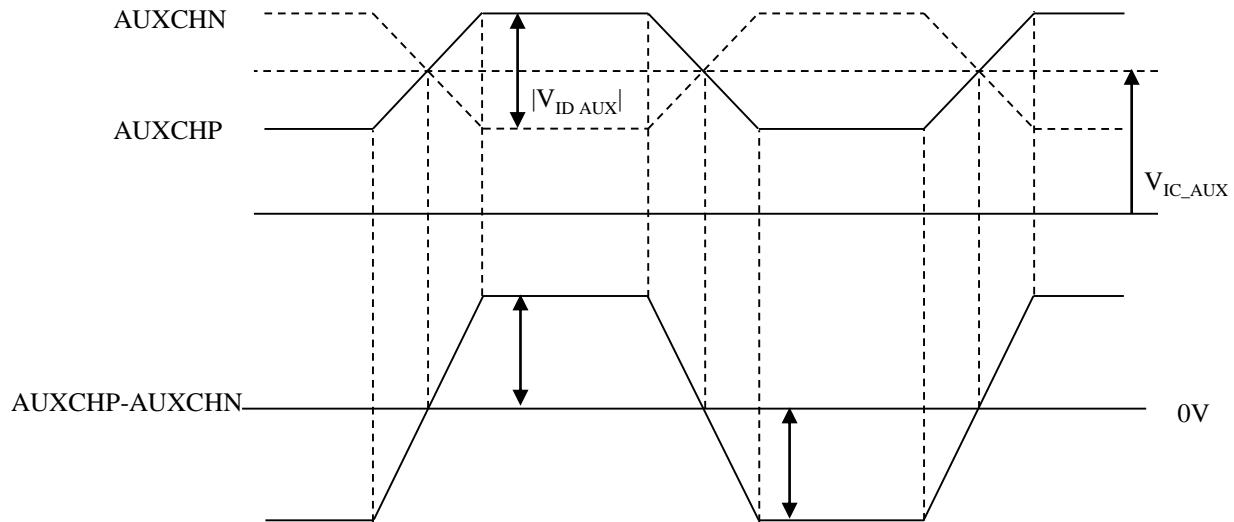
1st Lane0 : 1, 5,, 3837 Pixel → 4n+1 N=0~959

1st Lane1 : 2, 6,, 3838 Pixel → 4n+2 N=0~959



1st Lane2 : 3, 7,, 3839 Pixel → 4n+3 N=0~959

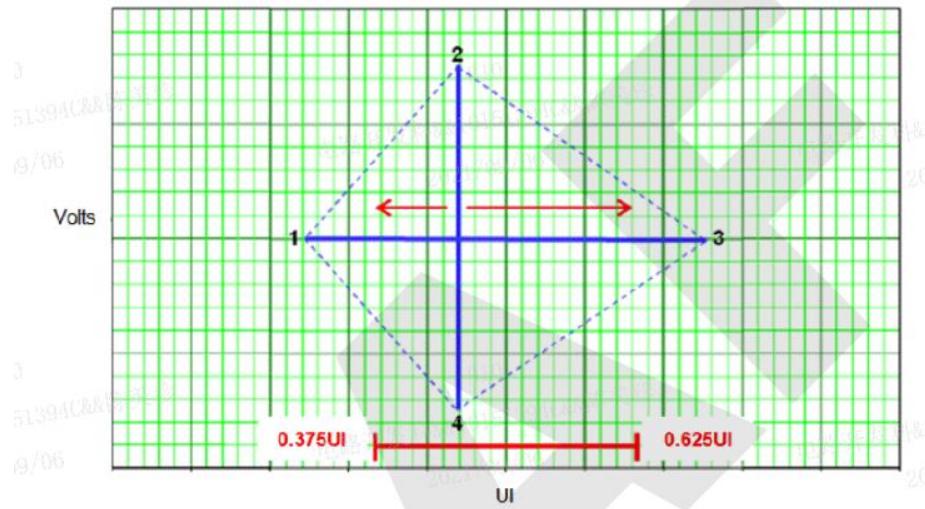
1st Lane3 : 4, 8,, 3840 Pixel → 4n+4 N=0~959

5.4 eDP Rx Interface Timing Parameter


5.4.1 Main link Signal

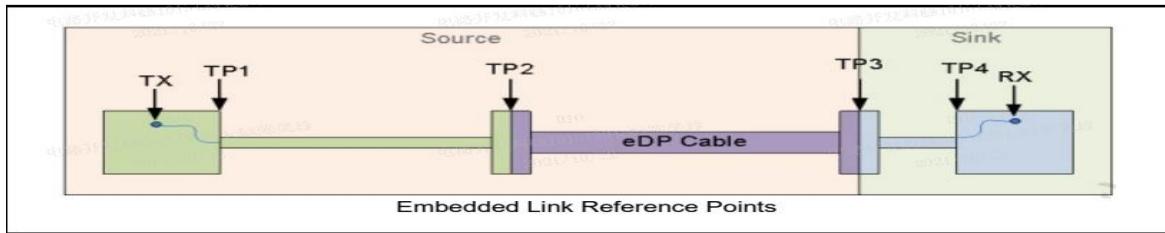
Item	Symbols	Min	Typ	Max	Unit	Remark
Spread spectrum clock	SSC	-0.5	-	0	%	
Module Frequency	FMOD	30	-	33	KHz	
Main link swing voltage	$ V_{ID} $	100	-	600	mv	
Main link common mode voltage	V_{IC}	0	-	2.0	V	

5.4.2 AUX_CH Signal


Item	Symbols	Min	Typ	Max	Unit	Remark
AUX swing voltage	$ V_{ID\ AUX} $	180	-	600	mV	
AUX common mode voltage	$V_{IC\ AUX}$	0	-	1.2	V	

5.4.3 HDP Signal

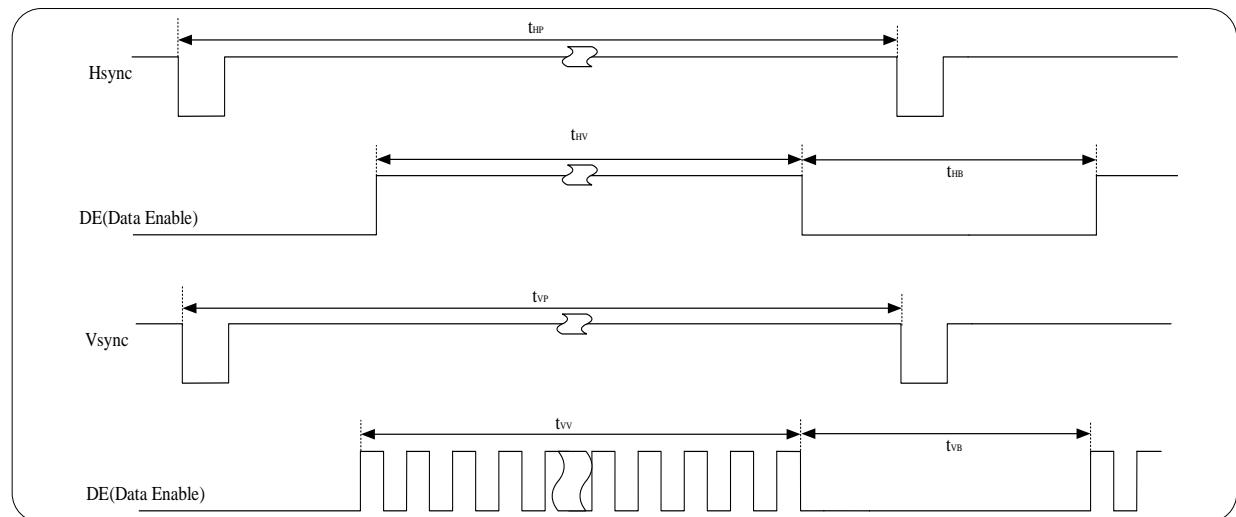
Item	Symbols	Min	Typ	Max	Unit	Remark
HPD Voltage	V_{HPD}	2.25	-	3.6	V	


5.4.4 Main Link Eye Diagram

Point	HBR2@ TP3_EQ EYE Mask Vertices	Voltage(V)
1	Any UI location(x),where the EYE width is open from x to x+0.5UI	0.0000
2	Any passing UI location between 0.375 and 0.625UI	0.0375
3	Point 1+0.5UI	0.0000
4	Same as Point 2	-0.0375

[eDP TP3_EQ EYE Mask Vertices]

Remark: TP3_EQ-After Reference RX Equalizer

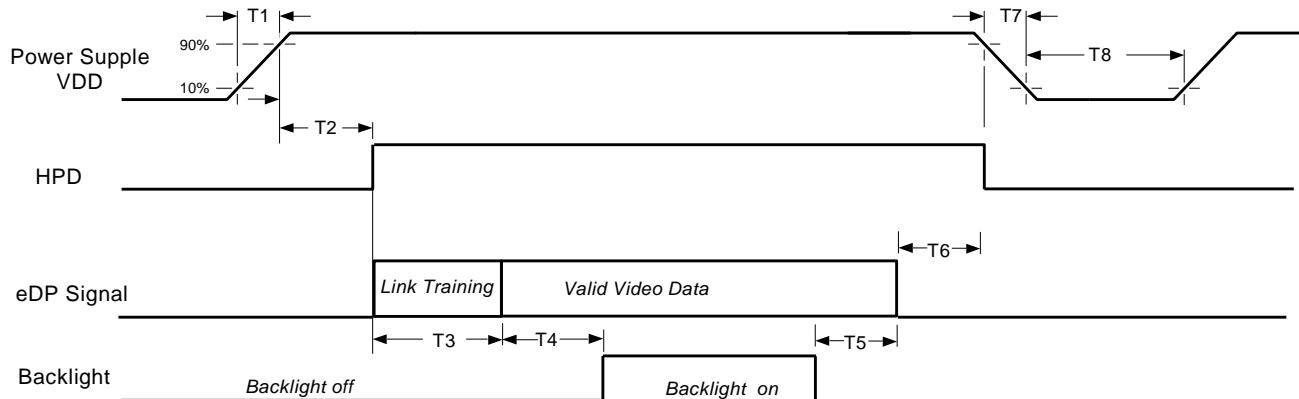


6.0 SIGNAL TIMING SPECIFICATION

6.1 The MV315QUM-N40 is operated by the DE only.

Item	Symbols		Min	Typ	Max	Unit	Note
DCLK	Period	tCLK	1.8	1.87	2.3	ns	
	Frequency	-	444	533	543	MHz	
Hsync	Period	tHP	3950	4000	4088	tCLK	
	Horizontal Valid	tHV	3840			tCLK	
	Horizontal Blank	tHB	110	160	248	tCLK	
	Frequency	fH	111	133.3	135	KHz	
Vsync	Period	tVP	2213	2222	2290	tHP	
	Vertical Valid	tVV	2160			tHP	
	Vertical Blank	tVB	53	62	130	tHP	
	Frequency	fV	50	60	61	Hz	

6.2 SIGNAL TIMING WAVEFORMS



7.0 INPUT SIGNALS, BASIC DISPLAY COLORS & GRAY SCALE OF COLORS

Color	Gray Level	RED										GREEN										BLUE									
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
Black	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
L511	-	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
Red	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	1023	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Green	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	1023	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	1023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

8.0 POWER SEQUENCE

VDD power, eDP signal and backlight on/off sequence are as following. eDP signals from any system shall be Hi-Z state when VDD is off.

Timing Parameter	Value			Remarks
	Min.	Typ.	Max.	
T1	0.5ms	-	10ms	
T2	0ms	-	200ms	
T3	0ms	-	-	During T3 Period, eDP link training time by customer's system.
T4	500ms	-	-	
T5	100ms	-	-	
T6	0ms	-	50ms	Recommend setting T6=0ms to avoid electronic noise when VDD is off. During T6 period, please keep the level of input eDP signals with Hi-Z state.
T7	0ms	-	200ms	T7 decreases smoothly, there is none re-bouncing voltage.
T8	1000ms	-	-	

Notes:

1. When the power supply VDD is 0V, keep the level of input signals on the low or keep high impedance.
2. Do not keep the interface signal high impedance when power is on.
3. Back Light must be turn on after power for logic and interface signal are valid.

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-64-8D-438	MV315QUM-N40 Specification Rev. O	22 OF 33

9.0 MECHANICAL CHARACTERISTICS

9.1 Dimensional Requirements

FIGURE 6 (located in Appendix) shows mechanical outlines for the model MV315QUM-N40. Other parameters are shown in Table 8.

<Table 8. Dimensional Parameters>

Parameter	Specification	Unit
Dimensional outline	709.5(H) × 412(V) × 11 (D) (TYP.)	mm
Weight	3060 (TYP.)	gram
Active area	697.3056(H) × 392.2344 (V)	mm
Pixel pitch	0.18159(H) × 0.18159(V)	mm
Number of pixels	3840(H) × 2160 (V) (1 pixel = R + G + B dots)	pixels
Back-light	Horizontal arranged, 1-LED Light bar Type	

9.2 Anti-Glare and Polarizer Hardness.

The surface of the LCD has an anti-glare coating to minimize reflection and a coating to reduce scratching.

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-64-8D-438	MV315QUM-N40 Specification Rev. O	23 OF 33

10.0 RELIABILITY TEST

The Reliability test items and its conditions are shown in below.

<Table 9 Reliability Test Parameters >

No	Test Items	Conditions	
1	High temperature storage test	Ta = 60 °C, 240 hrs	
2	Low temperature storage test	Ta = -20 °C, 240 hrs	
3	High temperature & high humidity operation test	Ta = 50 °C, 80%RH, 240hrs	
4	High temperature operation test	Ta = 50 °C, 240hrs	
5	Low temperature operation test	Ta = 0°C, 240hrs	
6	Thermal shock	Ta = -20 °C ↔ 60 °C (0.5 hr), 100 cycle	
7	Vibration test (non-operating)	Frequency Gravity / AMP Period	Random, 10 ~ 300 Hz, 30 min/Axis 1.0 Grms X, Y, Z 30 min
8	Shock test (non-operating)	Gravity	50G
		Pulse width	11msec, sine wave
		Direction	±X, ±Y, ±Z Once for each
9	Electro-static discharge test	Air : 150 pF, 330Ω, 15 KV Contact : 150 pF, 330Ω, 8 KV	

11.0 HANDLING & CAUTIONS

(1) Cautions when taking out the module

- Pick the pouch only, when taking out module from a shipping package.

(2) Cautions for handling the module

- As the electrostatic discharges may break the LCD module, handle the LCD module with care. Peel a protection sheet off from the LCD panel surface as slowly as possible.
- As the LCD panel and back - light element are made from fragile glass material, impulse and pressure to the LCD module should be avoided.
- As the surface of the polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning.
- Do not pull the interface connector in or out while the LCD module is operating.
- Put the module display side down on a flat horizontal plane.
- Handle connectors and cables with care.

(3) Cautions for the operation

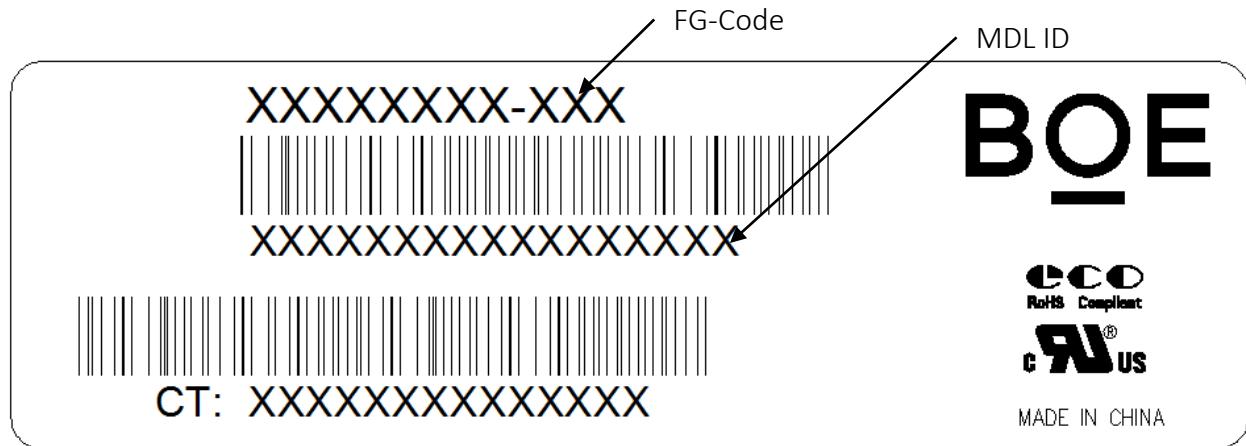
- When the module is operating, do not lose CLK, ENAB signals. If any one of these signals is lost, the LCD panel would be damaged.
- Obey the supply voltage sequence. If wrong sequence is applied, the module would be damaged.
- Ultra-violet ray filter is necessary for outdoor operation
- If the product will be used in extreme conditions such as high temperature, humidity, display patterns, operation time, etc., it is strongly recommended to contact BOE for application engineering device. Otherwise, the reliability and function of the module may not be guaranteed. Extreme conditions are commonly found at airports, transit stations, banks, stocks, markets, and controlling systems.

(4) Cautions for the storage

- When storing product as spares for a long time, LCD panels should be kept from direct light, moisture, and prevent water condensing.
- Ventilate the warehouse with effectively with proper ventilation system. Temperature should between 5°C and 35°C at normal humidity(≤ 75%).
- Product should be kept in storage no more than 6months. If products has been stored over 3 months, it is recommended to return to temperature of 20°C and humidity of 50% for 24hours.

(5) Cautions for the atmosphere

- Dew drop atmosphere should be avoided.
- Do not store and/or operate the LCD module in a high temperature and/or humidity atmosphere. Storage in an electro-conductive polymer packing pouch and under relatively low temperature atmosphere is recommended.


(6) Cautions for the module characteristics

- Do not apply fixed pattern data signal to the LCD module at product aging.
- Applying fixed pattern for a long time may cause image sticking.

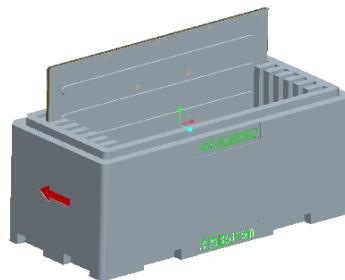
(7) Other cautions

- Do not disassemble and/or re-assemble LCD module.
- Do not re-adjust variable resistor or switch etc.
- When returning the module for repair or etc., Please pack the module not to be broken. We recommend to use the original shipping packages.
- When this reverse model is used as a forward-type model (PCB on top side), BOE can not guarantee any defects of LCM.
- If LCD module containing system is out of BOE "s operating or storing condition, BOE can not guarantee LCD module operating properly.

12.0 PRODUCT SERIAL NUMBER

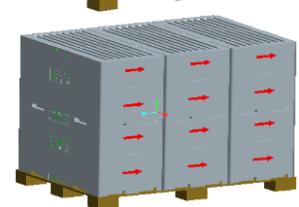
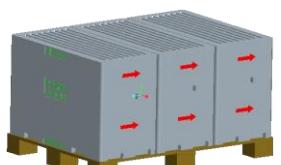
CT Code Rule:

Digit	1	2		3		4		5		6	
Code	X	X	X	X	X	X	X	X	X	X	X

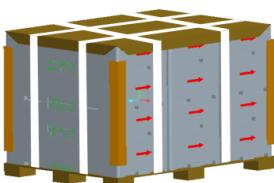
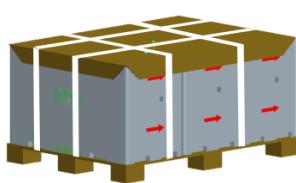

Des.

1. Commodity
2. Assembly Code (The A-Code for A942 is THLQ)
3. Revision Code
4. Site Code
5. Week Code
6. Unique Sequence Code (001-ZZZ)

13.0 PACKING INFORMATION



BOE provides the standard shipping container for customers, unless customer specifies their packing information. The standard packing method and Barcode information are shown in below.

13.1 Packing Order



1. Put one MDL in the PE bag (PCB↓) .

2. Put 8pcs MDL in the EPS Box.

3. Put one EPS Cover.

4. Put the boxes on the pallet (3/6ea boxes per pallet)

5. Put 0/4ea Paper Conner and pack with wrap film, then put one Top Cover on the EPS Box. Finally, pack with 4 packing belts.

厢车装载方式: 双层码放 (2+1)

Pallet摆放方式: 两横

12m厢车装载量: 2016pcs (56托)

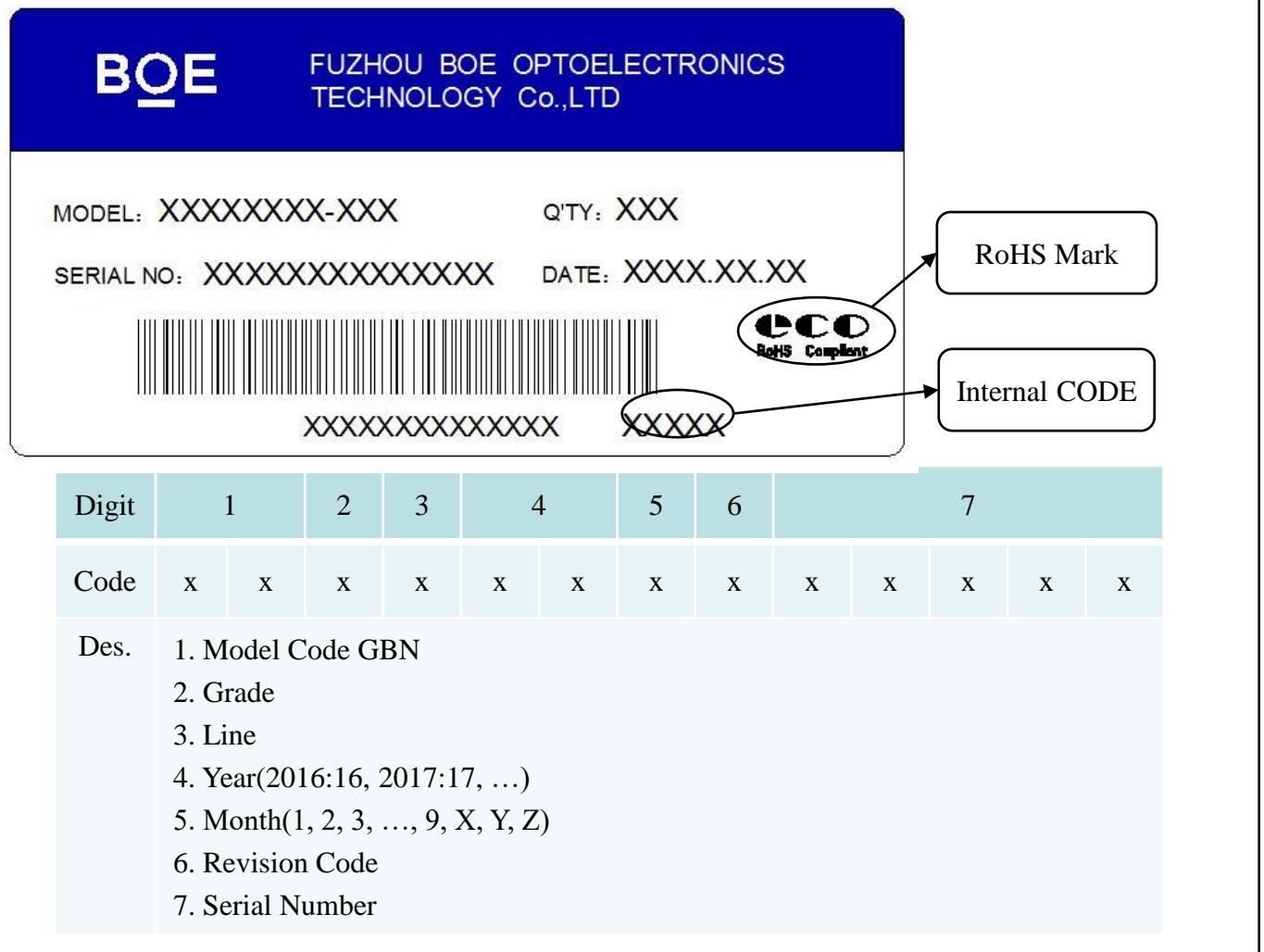
SPEC. NUMBER	SPEC. TITLE	PAGE
S8-64-8D-438	MV315QUM-N40 Specification Rev. O	28 OF 33

13.2 Packing Note

- Box Dimension : 810mm(L)×376mm(W)×504mm(H)
- Package Quantity in one Box : 8pcs

13.3 Box Label

- Label Size : 100 mm (L) × 50 mm (W)


• Contents

Model :

Q`ty : Module 8 Q`ty in one box

Serial No. : Box Serial No.

Date : Packing Date

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-64-8D-438	MV315QUM-N40 Specification Rev. O	29 OF 33

14.0 APPENDIX

Figure 1. Measurement Set Up

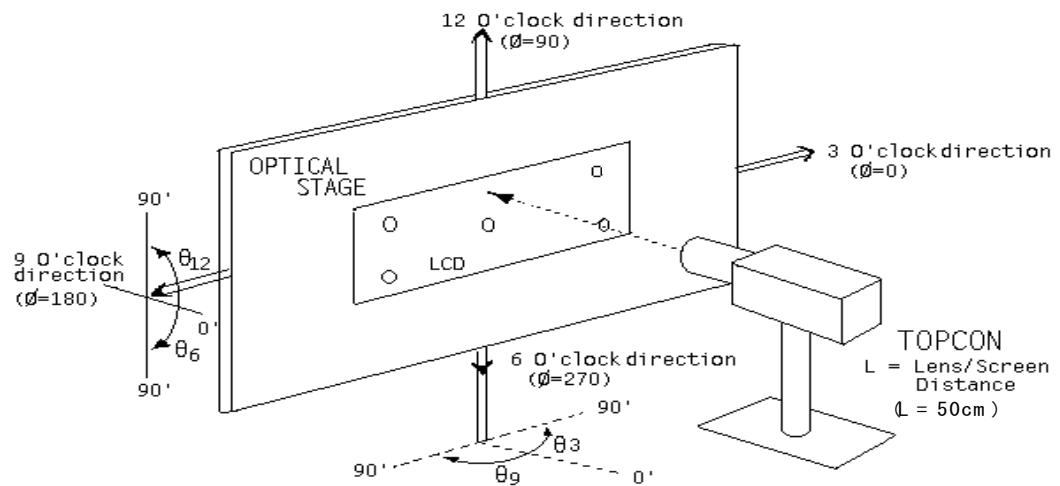


Figure 2. White Luminance and Uniformity Measurement Locations (9 points)

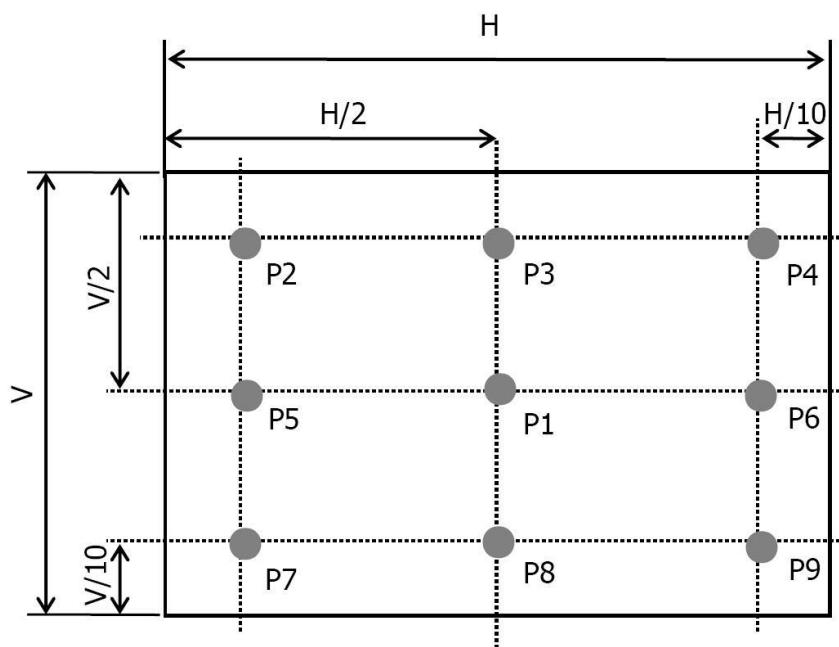
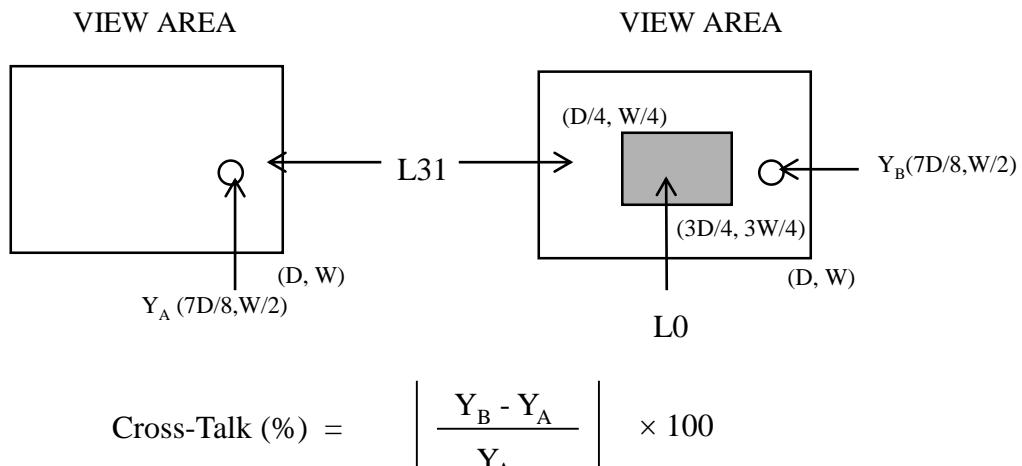
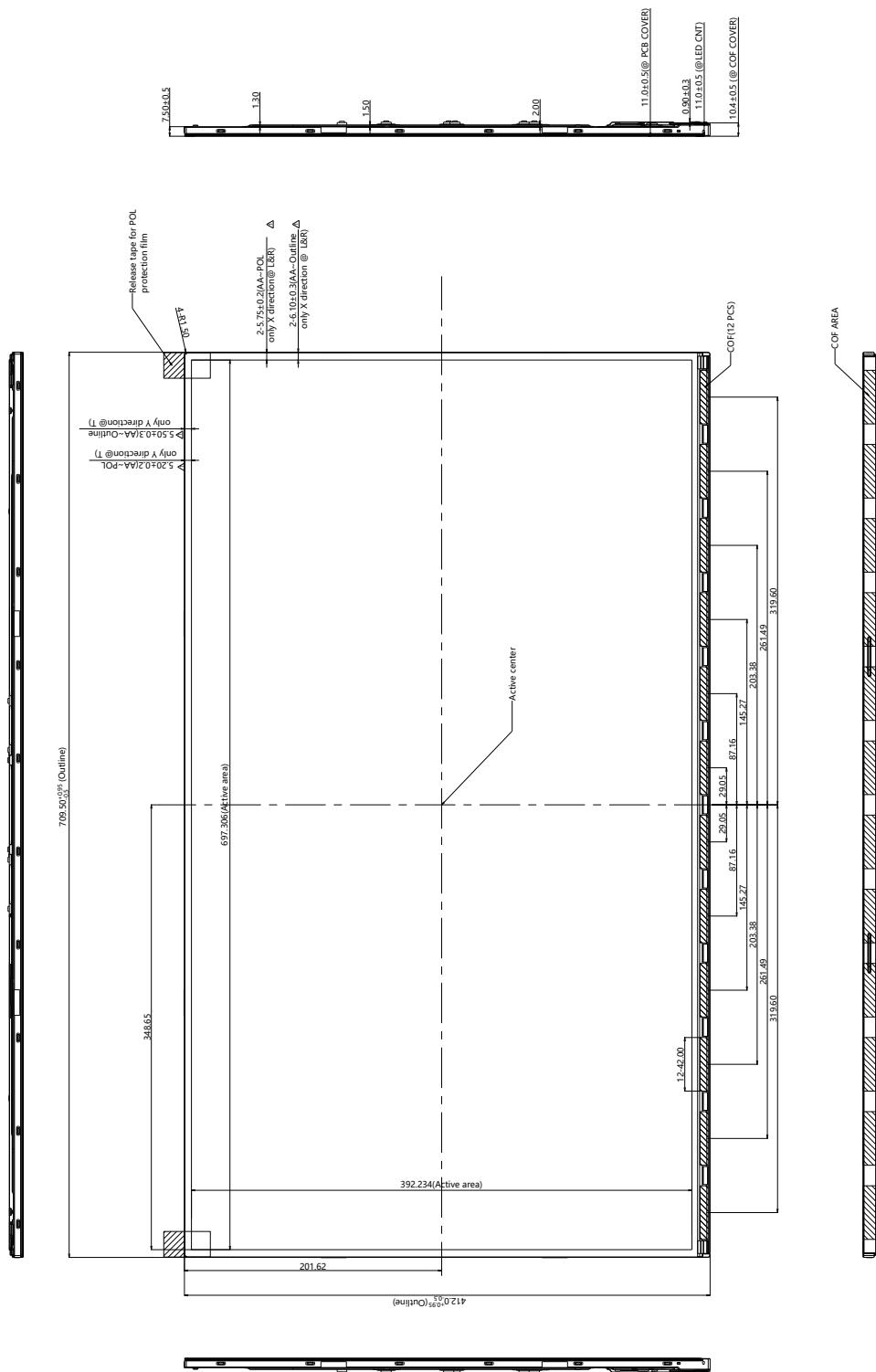
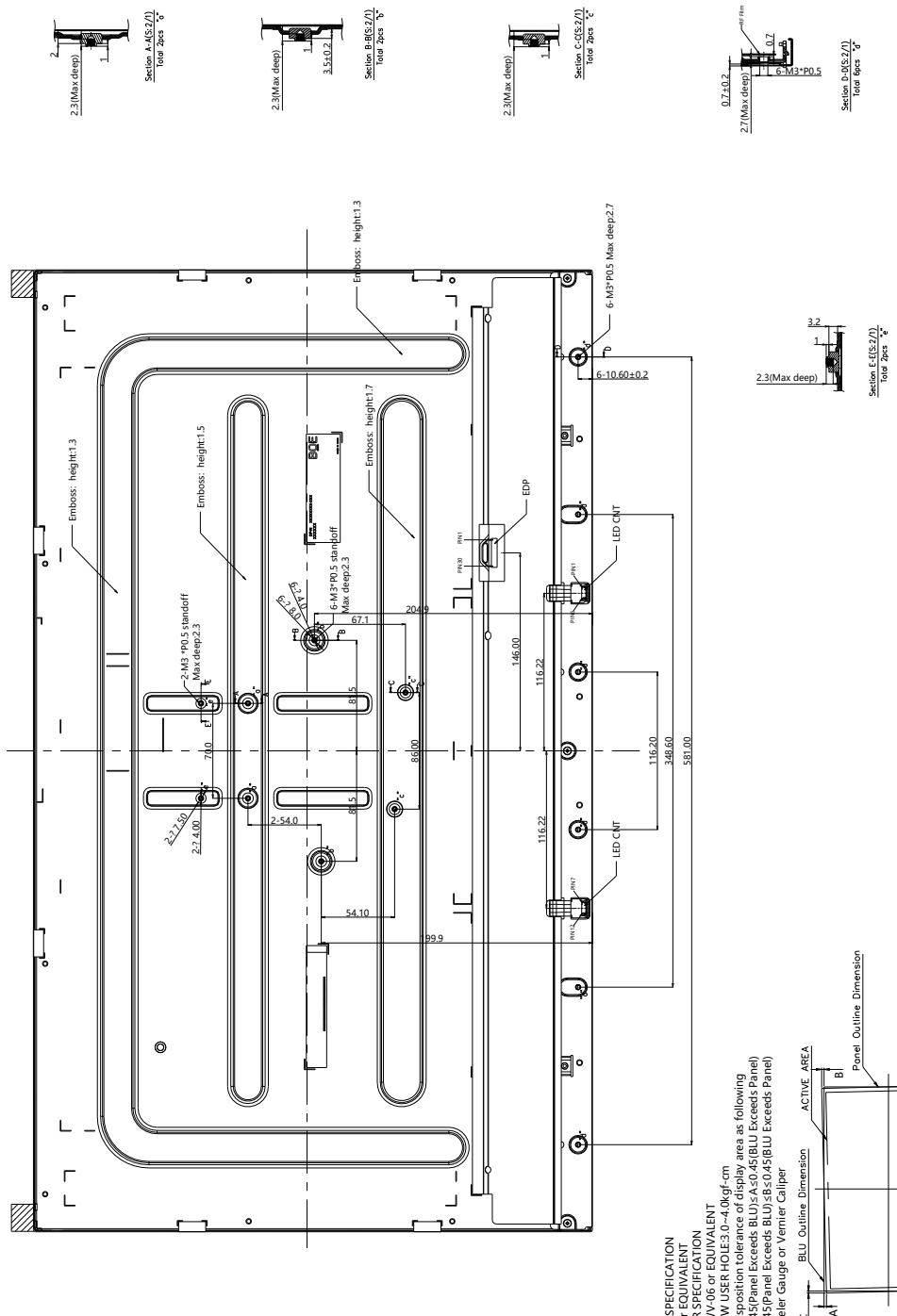



Figure 3. Response Time Testing

Figure 4. Cross Modulation Test Description



Where: Y_A = Initial luminance of measured area (cd/m^2)


Y_B = Subsequent luminance of measured area (cd/m^2)

The location measured will be exactly the same in both patterns

Figure 5. TFT-LCD Module Outline Dimensions (Front & Side view)

Figure 6. TFT-LCD Module Outline Dimensions (Back)

NOTE:

1. I/F CONNECTOR
MSA2402SP30 o
2. LED CONNECTOR
CNIST-A12511AW
3. TORQUE of SCREW
4. Tilt and partial direction
(1) X-direction: -0.4
(2) Y-direction: -0.4
- (2) Measuring Tool Fe

- 5. Unspecified tolerance to be ± 0.5
- 6. The COF and COF area is weak and sensitive, so please don't press the COF and COF area

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-64-8D-438	MV315QUM-N40 Specification Rev. O	33 OF 33
R2015-8006-O		A4(210 X 297)